Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("JamesBentley/Llama-2-7b-chat-hf-fine-tuned")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
|
48 |
-
gr.Textbox(
|
49 |
-
gr.
|
50 |
-
gr.
|
51 |
-
gr.Slider(
|
52 |
-
|
53 |
-
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
],
|
|
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# Initialize the pipeline with the specific model
|
5 |
+
pipe = pipeline("text-generation", model="JamesBentley/Llama-2-7b-chat-hf-fine-tuned")
|
|
|
|
|
6 |
|
7 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
8 |
+
# Build the conversation history for the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
messages = [{"role": "system", "content": system_message}]
|
10 |
+
messages.extend([{"role": "user" if role == 'user' else "assistant", "content": content} for role, content in history])
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
messages.append({"role": "user", "content": message})
|
12 |
+
|
13 |
+
# Generate the response using the model
|
14 |
+
response = pipe(messages, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1)
|
15 |
+
|
16 |
+
# Extract text from response (assumes single response generation)
|
17 |
+
return response[0]['generated_text']
|
18 |
+
|
19 |
+
# Setup Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
demo = gr.ChatInterface(
|
21 |
+
fn=respond,
|
22 |
+
inputs=[
|
23 |
+
gr.Textbox(label="Your message"),
|
24 |
+
gr.Dataframe(headers=["Role", "Content"], label="Conversation History"),
|
25 |
+
gr.Textbox(default="You are a friendly Chatbot.", label="System message"),
|
26 |
+
gr.Slider(minimum=1, maximum=2048, default=512, label="Max new tokens"),
|
27 |
+
gr.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature"),
|
28 |
+
gr.Slider(minimum=0.1, maximum=1.0, default=0.95, label="Top-p (nucleus sampling)")
|
|
|
|
|
|
|
|
|
29 |
],
|
30 |
+
outputs=[gr.Textbox(label="Response")]
|
31 |
)
|
32 |
|
|
|
33 |
if __name__ == "__main__":
|
34 |
+
demo.launch()
|