JamesBentley commited on
Commit
4d9b17a
·
verified ·
1 Parent(s): 28f0cc1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -53
app.py CHANGED
@@ -1,63 +1,34 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("JamesBentley/Llama-2-7b-chat-hf-fine-tuned")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
 
4
+ # Initialize the pipeline with the specific model
5
+ pipe = pipeline("text-generation", model="JamesBentley/Llama-2-7b-chat-hf-fine-tuned")
 
 
6
 
7
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
8
+ # Build the conversation history for the model
 
 
 
 
 
 
 
9
  messages = [{"role": "system", "content": system_message}]
10
+ messages.extend([{"role": "user" if role == 'user' else "assistant", "content": content} for role, content in history])
 
 
 
 
 
 
11
  messages.append({"role": "user", "content": message})
12
+
13
+ # Generate the response using the model
14
+ response = pipe(messages, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1)
15
+
16
+ # Extract text from response (assumes single response generation)
17
+ return response[0]['generated_text']
18
+
19
+ # Setup Gradio interface
 
 
 
 
 
 
 
 
 
 
20
  demo = gr.ChatInterface(
21
+ fn=respond,
22
+ inputs=[
23
+ gr.Textbox(label="Your message"),
24
+ gr.Dataframe(headers=["Role", "Content"], label="Conversation History"),
25
+ gr.Textbox(default="You are a friendly Chatbot.", label="System message"),
26
+ gr.Slider(minimum=1, maximum=2048, default=512, label="Max new tokens"),
27
+ gr.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature"),
28
+ gr.Slider(minimum=0.1, maximum=1.0, default=0.95, label="Top-p (nucleus sampling)")
 
 
 
 
29
  ],
30
+ outputs=[gr.Textbox(label="Response")]
31
  )
32
 
 
33
  if __name__ == "__main__":
34
+ demo.launch()