Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
|
6 |
+
# Load the saved model
|
7 |
+
model2 = load_model('/content/shoplifting_model.h5')
|
8 |
+
|
9 |
+
def predict_from_npy(npy_file):
|
10 |
+
try:
|
11 |
+
# Load the .npy file
|
12 |
+
data = np.load(npy_file.name, allow_pickle=True) # Use npy_file.name
|
13 |
+
|
14 |
+
# Reshape the data to (30, 51)
|
15 |
+
reshaped_data = data.reshape(30, 51)
|
16 |
+
|
17 |
+
# Make predictions
|
18 |
+
prediction = model2.predict(np.expand_dims(reshaped_data, axis=0))
|
19 |
+
threshold = 0.5
|
20 |
+
predicted_class = 'Shoplifting' if prediction[0][0] > threshold else 'Normal'
|
21 |
+
|
22 |
+
return predicted_class
|
23 |
+
except Exception as e:
|
24 |
+
return f"Error: {e}"
|
25 |
+
|
26 |
+
# Create Gradio interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=predict_from_npy,
|
29 |
+
inputs=gr.File(label="Upload .npy File"), # Input: File upload
|
30 |
+
outputs="text", # Output: Text (prediction)
|
31 |
+
title="Shoplifting Prediction from .npy",
|
32 |
+
description="Upload an .npy file containing keypoint data to get a shoplifting prediction."
|
33 |
+
)
|
34 |
+
|
35 |
+
# Launch the interface
|
36 |
+
iface.launch(debug=True)
|