Spaces:
Sleeping
Sleeping
Add PEFT model hosting app
Browse files- app.py +21 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the PEFT model and tokenizer from Hugging Face Hub
|
5 |
+
model_name = "JamieAi33/Phi-2_PEFT"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Define the prediction function
|
10 |
+
def generate_text(prompt, max_length=100):
|
11 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
+
outputs = model.generate(**inputs, max_new_tokens=max_length)
|
13 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
+
|
15 |
+
# Create the Gradio interface
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.Markdown("# PEFT LLM Demo")
|
18 |
+
gr.Markdown("Generate text using the Phi-2 PEFT model.")
|
19 |
+
with gr.Row():
|
20 |
+
prompt_input = gr.Textbox(label="Input Prompt", placeholder="Enter a prompt here...")
|
21 |
+
max_tokens_input = gr.Slider(label="Max Tokens", minimum=10, maximum=200, value=
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|