|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline |
|
import torch |
|
import gradio as gr |
|
from openpyxl import load_workbook |
|
from numpy import mean |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") |
|
|
|
tokenizer_keywords = AutoTokenizer.from_pretrained("transformer3/H2-keywordextractor") |
|
model_keywords = AutoModelForSeq2SeqLM.from_pretrained("transformer3/H2-keywordextractor") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating') |
|
new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating') |
|
|
|
|
|
|
|
classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device) |
|
|
|
|
|
label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'} |
|
|
|
def parse_xl(file_path): |
|
cells = [] |
|
|
|
workbook = load_workbook(filename=file_path) |
|
for sheet in workbook.worksheets: |
|
for row in sheet.iter_rows(): |
|
for cell in row: |
|
if cell.value != None: |
|
cells.append(cell.value) |
|
|
|
return cells |
|
|
|
def evaluate(file): |
|
reviews = parse_xl(file) |
|
ratings = [] |
|
text = "" |
|
|
|
for review in reviews: |
|
ratings.append(int(classifier(review)[0]['label'].split('_')[1])) |
|
text += review |
|
text += " " |
|
|
|
inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt") |
|
summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=50, max_length=1000) |
|
summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt") |
|
summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100) |
|
keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
return round(mean(ratings), 2), summary, keywords |
|
|
|
iface = gr.Interface( |
|
fn=evaluate, |
|
inputs=gr.File(label="Reviews", file_types=[".xlsx", ".xlsm", ".xltx", ".xltm"]), |
|
outputs=[gr.Textbox(label="Rating"), gr.Textbox(label="Summary"), gr.Textbox(label="Keywords")], |
|
title='Summarize Reviews', |
|
description="Evaluate and summarize collection of reviews. Reviews are submitted as an Excel file, where each reviews is in its own cell." |
|
) |
|
|
|
iface.launch(share=True) |