Jan90 commited on
Commit
7411c7b
·
verified ·
1 Parent(s): 458e6b6

Delete final_code.py

Browse files
Files changed (1) hide show
  1. final_code.py +0 -99
final_code.py DELETED
@@ -1,99 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "# Load model directly\n",
10
- "from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline\n",
11
- "import torch\n",
12
- "import gradio as gr\n",
13
- "from openpyxl import load_workbook\n",
14
- "from numpy import mean\n",
15
- "\n",
16
- "tokenizer = AutoTokenizer.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
17
- "model = AutoModelForSeq2SeqLM.from_pretrained(\"suriya7/bart-finetuned-text-summarization\")\n",
18
- "\n",
19
- "tokenizer_keywords = AutoTokenizer.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
20
- "model_keywords = AutoModelForSeq2SeqLM.from_pretrained(\"transformer3/H2-keywordextractor\")\n",
21
- "\n",
22
- "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
23
- "# Load the fine-tuned model and tokenizer\n",
24
- "new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating')\n",
25
- "new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating')\n",
26
- "\n",
27
- "\n",
28
- "# Create a classification pipeline\n",
29
- "classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device)\n",
30
- "\n",
31
- "# Add label mapping for sentiment analysis\n",
32
- "label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'}\n",
33
- "\n",
34
- "def parse_xl(file_path):\n",
35
- " cells = []\n",
36
- "\n",
37
- " workbook = load_workbook(filename=file_path)\n",
38
- " for sheet in workbook.worksheets:\n",
39
- " for row in sheet.iter_rows():\n",
40
- " for cell in row:\n",
41
- " if cell.value != None:\n",
42
- " cells.append(cell.value)\n",
43
- "\n",
44
- " return cells\n",
45
- "\n",
46
- "def evaluate(file):\n",
47
- " reviews = parse_xl(file)\n",
48
- " ratings = []\n",
49
- " text = \"\"\n",
50
- "\n",
51
- " for review in reviews:\n",
52
- " ratings.append(int(classifier(review)[0]['label'].split('_')[1]))\n",
53
- " text += review\n",
54
- " text += \" \"\n",
55
- " \n",
56
- " inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
57
- " summary_ids = model.generate(inputs[\"input_ids\"], num_beams=2, min_length=50, max_length=1000)\n",
58
- " summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]\n",
59
- "\n",
60
- " inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors=\"pt\")\n",
61
- " summary_ids_keywords = model_keywords.generate(inputs_keywords[\"input_ids\"], num_beams=2, min_length=0, max_length=100)\n",
62
- " keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] \n",
63
- "\n",
64
- " return round(mean(ratings), 2), summary, keywords\n",
65
- "\n",
66
- "iface = gr.Interface(\n",
67
- " fn=evaluate,\n",
68
- " inputs=gr.File(label=\"Reviews\", file_types=[\".xlsx\", \".xlsm\", \".xltx\", \".xltm\"]),\n",
69
- " outputs=[gr.Textbox(label=\"Rating\"), gr.Textbox(label=\"Summary\"), gr.Textbox(label=\"Keywords\")],\n",
70
- " title='Summarize Reviews',\n",
71
- " description=\"Evaluate and summarize collection of reviews. Reviews are submitted as an Excel file, where each reviews is in its own cell.\"\n",
72
- ")\n",
73
- "\n",
74
- "iface.launch(share=True)"
75
- ]
76
- }
77
- ],
78
- "metadata": {
79
- "kernelspec": {
80
- "display_name": "SolutionsInPR",
81
- "language": "python",
82
- "name": "python3"
83
- },
84
- "language_info": {
85
- "codemirror_mode": {
86
- "name": "ipython",
87
- "version": 3
88
- },
89
- "file_extension": ".py",
90
- "mimetype": "text/x-python",
91
- "name": "python",
92
- "nbconvert_exporter": "python",
93
- "pygments_lexer": "ipython3",
94
- "version": "3.12.3"
95
- }
96
- },
97
- "nbformat": 4,
98
- "nbformat_minor": 2
99
- }