Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,23 @@ from PIL import Image
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
raise ValueError("Hugging Face API token not found. Please set the HF_API_TOKEN environment variable.")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
payload = {
|
17 |
"inputs": prompt,
|
18 |
"parameters": {
|
@@ -22,27 +30,28 @@ def generate_image(prompt, negative_prompt="", guidance_scale=7.5, width=1024, h
|
|
22 |
"num_inference_steps": num_inference_steps,
|
23 |
},
|
24 |
}
|
25 |
-
|
26 |
-
payload["parameters"]["negative_prompt"] = negative_prompt
|
27 |
-
|
28 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
29 |
image_bytes = response.content
|
30 |
image = Image.open(io.BytesIO(image_bytes))
|
31 |
return image
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
iface = gr.Interface(
|
34 |
-
fn=
|
35 |
-
inputs=[
|
36 |
-
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
|
37 |
-
gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt here (optional)..."),
|
38 |
-
gr.Slider(label="Guidance Scale", minimum=1, maximum=20, step=0.1, value=7.5),
|
39 |
-
gr.Slider(label="Width", minimum=768, maximum=1024, step=1, value=1024),
|
40 |
-
gr.Slider(label="Height", minimum=768, maximum=1024, step=1, value=768),
|
41 |
-
gr.Slider(label="Number of Inference Steps", minimum=20, maximum=50, step=1, value=30)
|
42 |
-
],
|
43 |
outputs=gr.Image(type="pil"),
|
44 |
-
title="
|
45 |
-
description="
|
46 |
)
|
47 |
|
48 |
iface.launch()
|
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
|
7 |
+
# Assuming you have your API tokens set in environment variables
|
8 |
+
ZEPHYR_API_TOKEN = os.getenv("HF_API_TOKEN")
|
9 |
+
SD_API_TOKEN = os.getenv("HF_API_TOKEN")
|
|
|
10 |
|
11 |
+
if not ZEPHYR_API_TOKEN or not SD_API_TOKEN:
|
12 |
+
raise ValueError("API tokens not found. Please set the ZEPHYR_API_TOKEN and HF_API_TOKEN environment variables.")
|
13 |
|
14 |
+
ZEPHYR_API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
15 |
+
SD_API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
|
16 |
+
|
17 |
+
def query_zephyr(prompt):
|
18 |
+
headers = {"Authorization": f"Bearer {ZEPHYR_API_TOKEN}"}
|
19 |
+
response = requests.post(ZEPHYR_API_URL, headers=headers, json={"inputs": prompt})
|
20 |
+
return response.json()
|
21 |
+
|
22 |
+
def generate_image_from_prompt(prompt, guidance_scale=7.5, width=1024, height=768, num_inference_steps=30):
|
23 |
+
headers = {"Authorization": f"Bearer {SD_API_TOKEN}"}
|
24 |
payload = {
|
25 |
"inputs": prompt,
|
26 |
"parameters": {
|
|
|
30 |
"num_inference_steps": num_inference_steps,
|
31 |
},
|
32 |
}
|
33 |
+
response = requests.post(SD_API_URL, headers=headers, json=payload)
|
|
|
|
|
|
|
34 |
image_bytes = response.content
|
35 |
image = Image.open(io.BytesIO(image_bytes))
|
36 |
return image
|
37 |
|
38 |
+
def generate_image_from_linkedin_text(linkedin_text):
|
39 |
+
# Step 1: Generate a prompt from the LinkedIn text using Zephyr
|
40 |
+
zephyr_output = query_zephyr(linkedin_text)
|
41 |
+
generated_prompt = zephyr_output.get("generated_text", "")
|
42 |
+
|
43 |
+
# Step 2: Use the generated prompt to create an image with Stable Diffusion
|
44 |
+
if generated_prompt:
|
45 |
+
return generate_image_from_prompt(generated_prompt)
|
46 |
+
else:
|
47 |
+
raise ValueError("Failed to generate a prompt from the LinkedIn text.")
|
48 |
+
|
49 |
iface = gr.Interface(
|
50 |
+
fn=generate_image_from_linkedin_text,
|
51 |
+
inputs=[gr.Textbox(label="LinkedIn Message", placeholder="Enter LinkedIn message here...")],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
outputs=gr.Image(type="pil"),
|
53 |
+
title="Generate Images from LinkedIn Messages",
|
54 |
+
description="Enter a LinkedIn message to generate a creative prompt with Zephyr, which is then used to generate an image with Stable Diffusion."
|
55 |
)
|
56 |
|
57 |
iface.launch()
|