Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,8 @@ from PIL import Image
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
|
7 |
-
# Assuming your API tokens
|
8 |
-
ZEPHYR_API_TOKEN = os.getenv("
|
9 |
SD_API_TOKEN = os.getenv("HF_API_TOKEN")
|
10 |
|
11 |
if not ZEPHYR_API_TOKEN or not SD_API_TOKEN:
|
@@ -17,16 +17,9 @@ SD_API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-dif
|
|
17 |
def query_zephyr(prompt):
|
18 |
headers = {"Authorization": f"Bearer {ZEPHYR_API_TOKEN}"}
|
19 |
response = requests.post(ZEPHYR_API_URL, headers=headers, json={"inputs": prompt})
|
20 |
-
|
21 |
-
response_data = response.json()
|
22 |
-
if isinstance(response_data, list) and len(response_data) > 0:
|
23 |
-
# Extracting the generated text from the first item in the response list
|
24 |
-
generated_text = response_data[0].get("generated_text", "")
|
25 |
-
return generated_text
|
26 |
-
else:
|
27 |
-
raise ValueError("Unexpected response format from Zephyr API")
|
28 |
|
29 |
-
def generate_image_from_prompt(prompt, negative_prompt
|
30 |
headers = {"Authorization": f"Bearer {SD_API_TOKEN}"}
|
31 |
payload = {
|
32 |
"inputs": prompt,
|
@@ -37,7 +30,7 @@ def generate_image_from_prompt(prompt, negative_prompt="", guidance_scale=7.5, w
|
|
37 |
"num_inference_steps": num_inference_steps,
|
38 |
},
|
39 |
}
|
40 |
-
if negative_prompt: # Add
|
41 |
payload["parameters"]["negative_prompt"] = negative_prompt
|
42 |
|
43 |
response = requests.post(SD_API_URL, headers=headers, json=payload)
|
@@ -46,22 +39,20 @@ def generate_image_from_prompt(prompt, negative_prompt="", guidance_scale=7.5, w
|
|
46 |
return image
|
47 |
|
48 |
def generate_image_from_linkedin_text(linkedin_text, negative_prompt, guidance_scale, width, height, num_inference_steps):
|
|
|
49 |
zephyr_response = query_zephyr(linkedin_text)
|
50 |
-
|
51 |
if zephyr_response and isinstance(zephyr_response, list):
|
52 |
generated_prompt = zephyr_response[0].get("generated_text", "")
|
53 |
else:
|
54 |
raise ValueError("Unexpected response format from Zephyr model.")
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
if generated_prompt:
|
59 |
image = generate_image_from_prompt(generated_prompt, negative_prompt, guidance_scale, width, height, num_inference_steps)
|
60 |
return image, generated_prompt
|
61 |
else:
|
62 |
raise ValueError("Failed to generate a prompt from the LinkedIn text.")
|
63 |
|
64 |
-
# Update Gradio interface with additional parameters
|
65 |
iface = gr.Interface(
|
66 |
fn=generate_image_from_linkedin_text,
|
67 |
inputs=[
|
@@ -74,10 +65,10 @@ iface = gr.Interface(
|
|
74 |
],
|
75 |
outputs=[
|
76 |
gr.Image(type="pil"),
|
77 |
-
gr.
|
78 |
],
|
79 |
title="Generate Images from LinkedIn Messages",
|
80 |
-
description="Enter a LinkedIn message to generate a creative prompt with Zephyr, which is then used to generate an image with Stable Diffusion.
|
81 |
)
|
82 |
|
83 |
iface.launch()
|
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
|
7 |
+
# Assuming you have your API tokens set in environment variables
|
8 |
+
ZEPHYR_API_TOKEN = os.getenv("ZEPHYR_API_TOKEN")
|
9 |
SD_API_TOKEN = os.getenv("HF_API_TOKEN")
|
10 |
|
11 |
if not ZEPHYR_API_TOKEN or not SD_API_TOKEN:
|
|
|
17 |
def query_zephyr(prompt):
|
18 |
headers = {"Authorization": f"Bearer {ZEPHYR_API_TOKEN}"}
|
19 |
response = requests.post(ZEPHYR_API_URL, headers=headers, json={"inputs": prompt})
|
20 |
+
return response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def generate_image_from_prompt(prompt, negative_prompt, guidance_scale, width, height, num_inference_steps):
|
23 |
headers = {"Authorization": f"Bearer {SD_API_TOKEN}"}
|
24 |
payload = {
|
25 |
"inputs": prompt,
|
|
|
30 |
"num_inference_steps": num_inference_steps,
|
31 |
},
|
32 |
}
|
33 |
+
if negative_prompt: # Add negative prompt if provided
|
34 |
payload["parameters"]["negative_prompt"] = negative_prompt
|
35 |
|
36 |
response = requests.post(SD_API_URL, headers=headers, json=payload)
|
|
|
39 |
return image
|
40 |
|
41 |
def generate_image_from_linkedin_text(linkedin_text, negative_prompt, guidance_scale, width, height, num_inference_steps):
|
42 |
+
# Generate a prompt from the LinkedIn text using Zephyr
|
43 |
zephyr_response = query_zephyr(linkedin_text)
|
|
|
44 |
if zephyr_response and isinstance(zephyr_response, list):
|
45 |
generated_prompt = zephyr_response[0].get("generated_text", "")
|
46 |
else:
|
47 |
raise ValueError("Unexpected response format from Zephyr model.")
|
48 |
+
|
49 |
+
# Use the generated prompt to create an image with Stable Diffusion
|
|
|
50 |
if generated_prompt:
|
51 |
image = generate_image_from_prompt(generated_prompt, negative_prompt, guidance_scale, width, height, num_inference_steps)
|
52 |
return image, generated_prompt
|
53 |
else:
|
54 |
raise ValueError("Failed to generate a prompt from the LinkedIn text.")
|
55 |
|
|
|
56 |
iface = gr.Interface(
|
57 |
fn=generate_image_from_linkedin_text,
|
58 |
inputs=[
|
|
|
65 |
],
|
66 |
outputs=[
|
67 |
gr.Image(type="pil"),
|
68 |
+
gr.Label(label="Generated Prompt")
|
69 |
],
|
70 |
title="Generate Images from LinkedIn Messages",
|
71 |
+
description="Enter a LinkedIn message to generate a creative prompt with Zephyr, which is then used to generate an image with Stable Diffusion. Image parameters can be adjusted."
|
72 |
)
|
73 |
|
74 |
iface.launch()
|