from diffusers import StableDiffusionXLPipeline import torch import gradio as gr # Load the Stable Diffusion XL model pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to("cuda") def generate_image(prompt, prompt_2): # Generate the image based on the prompts image = pipeline(prompt=prompt, prompt_2=prompt_2).images[0] # Convert the PIL image to a format that Gradio can display return image # Define the Gradio interface iface = gr.Interface(fn=generate_image, inputs=[gr.Textbox(label="Prompt 1: Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"), gr.Textbox(label="Prompt 2: Van Gogh painting")], outputs="image", title="Stable Diffusion XL Image Generator", description="Generate images with Stable Diffusion XL based on two prompts.") # Launch the Gradio app iface.launch()