import requests import io from PIL import Image import gradio as gr import os # Ensure your API token is correctly set in your environment variables API_TOKEN = os.getenv("HF_API_TOKEN") if not API_TOKEN: raise ValueError("Hugging Face API token not found. Please set the HF_API_TOKEN environment variable.") API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" headers = {"Authorization": f"Bearer {API_TOKEN}"} def generate_image(prompt, negative_prompt="", guidance_scale=7.5, width=1024, height=768, num_inference_steps=30): payload = { "inputs": prompt, "parameters": { "guidance_scale": guidance_scale, "width": width, "height": height, "num_inference_steps": num_inference_steps, }, } if negative_prompt: # Only add negative_prompt to payload if it's provided payload["parameters"]["negative_prompt"] = negative_prompt response = requests.post(API_URL, headers=headers, json=payload) image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) return image iface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt here (optional)..."), gr.Slider(label="Guidance Scale", minimum=1, maximum=20, step=0.1, value=7.5), gr.Slider(label="Width", minimum=768, maximum=1024, step=1, value=1024), gr.Slider(label="Height", minimum=768, maximum=1024, step=1, value=768), gr.Slider(label="Number of Inference Steps", minimum=20, maximum=50, step=1, value=30) ], outputs=gr.Image(type="pil"), title="Stable Diffusion XL Image Generator", description="Generate images with Stable Diffusion XL. Provide a prompt, optionally specify a negative prompt, and adjust other parameters as desired." ) iface.launch()