File size: 2,100 Bytes
73d50df
a57d0bc
 
73d50df
77e4539
7d27275
 
 
 
73d50df
0c2a5d3
a57d0bc
7d27275
95cdd7b
a57d0bc
73d50df
 
 
7d27275
 
70548b8
f97cb5f
 
7d27275
f97cb5f
 
70548b8
 
7d27275
95cdd7b
7d27275
a57d0bc
 
 
 
7d27275
a57d0bc
 
 
 
528548d
 
7d27275
528548d
7d27275
 
 
73d50df
 
 
 
c7f0278
528548d
73d50df
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
import tensorflow as tf
from transformers import AutoFeatureExtractor
from PIL import Image
import numpy as np
import logging

# Configure logging
logging.basicConfig(level=logging.DEBUG)

# Load the pre-trained model and feature extractor
model_name = "hoangthan/image-classification"
logging.info("Loading image processor and model...")
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = tf.keras.models.load_model('https://huggingface.co/hoangthan/image-classification/resolve/main/tf_model.h5')

# Define the prediction function
def predict(image):
    try:
        logging.info("Received image of type: %s", type(image))
        logging.debug("Image content: %s", image)
        
        # Use the 'composite' key to get the final image
        if isinstance(image, dict):
            image = image['composite']
        
        logging.debug("Converting to NumPy array...")
        image = np.array(image).astype('uint8')
        logging.debug("Converting NumPy array to PIL image...")
        image = Image.fromarray(image, 'RGBA').convert('RGB')
        logging.debug("Image converted successfully.")
        
        # Process the image for the model
        inputs = feature_extractor(images=image, return_tensors="np")
        pixel_values = inputs['pixel_values'][0]

        # Predict using the model
        preds = model.predict(np.expand_dims(pixel_values, axis=0))
        top_probs = tf.nn.softmax(preds[0])
        top_idxs = np.argsort(-top_probs)[:3]
        top_classes = [model.config.id2label[idx] for idx in top_idxs]
        result = {top_classes[i]: float(top_probs[i]) for i in range(3)}
        logging.info("Prediction successful.")
        return result
    except Exception as e:
        logging.error("Error during prediction: %s", e)
        return str(e)

# Create the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Sketchpad(),
    outputs=gr.JSON(),
    title="Drawing Classifier",
    description="Draw something and the model will try to identify it!"
)

# Launch the interface
iface.launch()