Jangai commited on
Commit
79d3533
·
verified ·
1 Parent(s): 9317cd1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -1,8 +1,8 @@
1
  import gradio as gr
2
  from transformers import TrOCRProcessor, VisionEncoderDecoderModel
3
  from PIL import Image
4
- import requests
5
  import torch
 
6
 
7
  # Load the pre-trained model and processor
8
  processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
@@ -10,6 +10,7 @@ model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwrit
10
 
11
  # Define the prediction function
12
  def recognize_handwriting(image):
 
13
  pixel_values = processor(images=image, return_tensors="pt").pixel_values
14
  generated_ids = model.generate(pixel_values)
15
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
@@ -23,13 +24,13 @@ def provide_feedback(image, correct_text):
23
 
24
  with gr.Blocks() as demo:
25
  with gr.Tab("Recognize Handwriting"):
26
- image_input = gr.Image(type="pil")
27
  output = gr.Textbox(label="Recognized Text")
28
  recognize_button = gr.Button("Recognize")
29
- recognize_button.click(fn=recognize_handwriting, inputs=image_input, outputs=output)
30
 
31
  with gr.Tab("Provide Feedback"):
32
- image_feedback = gr.Image(type="pil")
33
  correct_text = gr.Textbox(label="Correct Text")
34
  feedback_button = gr.Button("Submit Feedback")
35
  feedback_output = gr.Textbox()
 
1
  import gradio as gr
2
  from transformers import TrOCRProcessor, VisionEncoderDecoderModel
3
  from PIL import Image
 
4
  import torch
5
+ import numpy as np
6
 
7
  # Load the pre-trained model and processor
8
  processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten')
 
10
 
11
  # Define the prediction function
12
  def recognize_handwriting(image):
13
+ image = Image.fromarray(image.astype('uint8'), 'RGB')
14
  pixel_values = processor(images=image, return_tensors="pt").pixel_values
15
  generated_ids = model.generate(pixel_values)
16
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
 
24
 
25
  with gr.Blocks() as demo:
26
  with gr.Tab("Recognize Handwriting"):
27
+ sketchpad = gr.Sketchpad(label="Draw something")
28
  output = gr.Textbox(label="Recognized Text")
29
  recognize_button = gr.Button("Recognize")
30
+ recognize_button.click(fn=recognize_handwriting, inputs=sketchpad, outputs=output)
31
 
32
  with gr.Tab("Provide Feedback"):
33
+ image_feedback = gr.Image(type="numpy")
34
  correct_text = gr.Textbox(label="Correct Text")
35
  feedback_button = gr.Button("Submit Feedback")
36
  feedback_output = gr.Textbox()