import gradio as gr from PIL import Image import requests import torch from transformers import TrOCRProcessor, VisionEncoderDecoderModel import logging # Setup logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Load processor and model model_name = "microsoft/trocr-large-handwritten" processor = TrOCRProcessor.from_pretrained(model_name) model = VisionEncoderDecoderModel.from_pretrained(model_name) # Function to recognize handwriting def recognize_handwriting(image): try: logger.info("Received an image for handwriting recognition.") if isinstance(image, dict): image = image.get("image") if image is None: logger.error("No image found in the input.") return "No image found" image = Image.fromarray(image).convert("RGB") pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] logger.info("Handwriting recognized successfully.") return generated_text except Exception as e: logger.error(f"Error during handwriting recognition: {e}") return f"Error: {str(e)}" # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("## Handwritten Text Recognition") with gr.Row(): with gr.Column(): image_input = gr.Image(tool="editor", type="numpy", label="Draw or Upload an Image") submit_button = gr.Button("Submit") with gr.Column(): output_text = gr.Textbox(label="Recognized Text") submit_button.click(fn=recognize_handwriting, inputs=image_input, outputs=output_text) # Launch the app if __name__ == "__main__": demo.launch()