Spaces:
Sleeping
Sleeping
Final Commit
Browse files
app.py
CHANGED
@@ -2,8 +2,9 @@ import pandas as pd
|
|
2 |
import streamlit as st
|
3 |
import altair as alt
|
4 |
|
5 |
-
|
6 |
import streamlit.components.v1 as components
|
|
|
7 |
|
8 |
components.html(
|
9 |
"""
|
@@ -11,7 +12,7 @@ components.html(
|
|
11 |
document.querySelector('iframe').style.height = '100vh';
|
12 |
</script>
|
13 |
""",
|
14 |
-
height=0,
|
15 |
)
|
16 |
|
17 |
|
@@ -28,17 +29,13 @@ st.markdown(
|
|
28 |
)
|
29 |
|
30 |
|
31 |
-
|
32 |
-
|
33 |
# Load and clean dataset
|
34 |
url = "https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/building_inventory.csv"
|
35 |
df = pd.read_csv(url, na_values={'Year Acquired': 0, 'Year Constructed': 0, 'Square Footage': 0})
|
36 |
-
# st.set_page_config(page_title="Building Inventory Analysis", layout="wide")
|
37 |
-
|
38 |
|
39 |
|
40 |
# Displaying the Dataset Overview
|
41 |
-
st.header("Dataset
|
42 |
st.write("Below are the first 10 rows of the dataset:")
|
43 |
st.write(df.head(10))
|
44 |
st.write(f"The shape of dataset before cleaning is: {df.shape}")
|
@@ -60,9 +57,9 @@ df = df.dropna(subset=['Year Acquired', 'Year Constructed'])
|
|
60 |
df['County'] = df['County'].fillna('Unknown')
|
61 |
df['Square Footage'] = df['Square Footage'].fillna(df['Square Footage'].mean())
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
|
68 |
# Visualization 1: Number of Buildings by County and Agency
|
|
|
2 |
import streamlit as st
|
3 |
import altair as alt
|
4 |
|
5 |
+
|
6 |
import streamlit.components.v1 as components
|
7 |
+
st.set_page_config(page_title="Building Inventory Analysis", layout="wide")
|
8 |
|
9 |
components.html(
|
10 |
"""
|
|
|
12 |
document.querySelector('iframe').style.height = '100vh';
|
13 |
</script>
|
14 |
""",
|
15 |
+
height=0,
|
16 |
)
|
17 |
|
18 |
|
|
|
29 |
)
|
30 |
|
31 |
|
|
|
|
|
32 |
# Load and clean dataset
|
33 |
url = "https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/building_inventory.csv"
|
34 |
df = pd.read_csv(url, na_values={'Year Acquired': 0, 'Year Constructed': 0, 'Square Footage': 0})
|
|
|
|
|
35 |
|
36 |
|
37 |
# Displaying the Dataset Overview
|
38 |
+
st.header("Building Inventory Dataset Analysis")
|
39 |
st.write("Below are the first 10 rows of the dataset:")
|
40 |
st.write(df.head(10))
|
41 |
st.write(f"The shape of dataset before cleaning is: {df.shape}")
|
|
|
57 |
df['County'] = df['County'].fillna('Unknown')
|
58 |
df['Square Footage'] = df['Square Footage'].fillna(df['Square Footage'].mean())
|
59 |
|
60 |
+
st.subheader("Missing Values After Cleaning")
|
61 |
+
st.write(df.isnull().sum())
|
62 |
+
st.write(f"The shape of dataset after cleaning is: {df.shape}")
|
63 |
|
64 |
|
65 |
# Visualization 1: Number of Buildings by County and Agency
|