JanhaviZarapkar commited on
Commit
f12e548
·
verified ·
1 Parent(s): a949df4

Final Commit

Browse files
Files changed (1) hide show
  1. app.py +7 -10
app.py CHANGED
@@ -2,8 +2,9 @@ import pandas as pd
2
  import streamlit as st
3
  import altair as alt
4
 
5
- st.set_page_config(page_title="Building Inventory Analysis", layout="wide")
6
  import streamlit.components.v1 as components
 
7
 
8
  components.html(
9
  """
@@ -11,7 +12,7 @@ components.html(
11
  document.querySelector('iframe').style.height = '100vh';
12
  </script>
13
  """,
14
- height=0, # Prevents extra space for the component
15
  )
16
 
17
 
@@ -28,17 +29,13 @@ st.markdown(
28
  )
29
 
30
 
31
-
32
-
33
  # Load and clean dataset
34
  url = "https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/building_inventory.csv"
35
  df = pd.read_csv(url, na_values={'Year Acquired': 0, 'Year Constructed': 0, 'Square Footage': 0})
36
- # st.set_page_config(page_title="Building Inventory Analysis", layout="wide")
37
-
38
 
39
 
40
  # Displaying the Dataset Overview
41
- st.header("Dataset Overview")
42
  st.write("Below are the first 10 rows of the dataset:")
43
  st.write(df.head(10))
44
  st.write(f"The shape of dataset before cleaning is: {df.shape}")
@@ -60,9 +57,9 @@ df = df.dropna(subset=['Year Acquired', 'Year Constructed'])
60
  df['County'] = df['County'].fillna('Unknown')
61
  df['Square Footage'] = df['Square Footage'].fillna(df['Square Footage'].mean())
62
 
63
- # st.subheader("Missing Values After Cleaning")
64
- # st.write(df.isnull().sum())
65
- # st.write(f"The shape of dataset after cleaning is: {df.shape}")
66
 
67
 
68
  # Visualization 1: Number of Buildings by County and Agency
 
2
  import streamlit as st
3
  import altair as alt
4
 
5
+
6
  import streamlit.components.v1 as components
7
+ st.set_page_config(page_title="Building Inventory Analysis", layout="wide")
8
 
9
  components.html(
10
  """
 
12
  document.querySelector('iframe').style.height = '100vh';
13
  </script>
14
  """,
15
+ height=0,
16
  )
17
 
18
 
 
29
  )
30
 
31
 
 
 
32
  # Load and clean dataset
33
  url = "https://raw.githubusercontent.com/UIUC-iSchool-DataViz/is445_data/main/building_inventory.csv"
34
  df = pd.read_csv(url, na_values={'Year Acquired': 0, 'Year Constructed': 0, 'Square Footage': 0})
 
 
35
 
36
 
37
  # Displaying the Dataset Overview
38
+ st.header("Building Inventory Dataset Analysis")
39
  st.write("Below are the first 10 rows of the dataset:")
40
  st.write(df.head(10))
41
  st.write(f"The shape of dataset before cleaning is: {df.shape}")
 
57
  df['County'] = df['County'].fillna('Unknown')
58
  df['Square Footage'] = df['Square Footage'].fillna(df['Square Footage'].mean())
59
 
60
+ st.subheader("Missing Values After Cleaning")
61
+ st.write(df.isnull().sum())
62
+ st.write(f"The shape of dataset after cleaning is: {df.shape}")
63
 
64
 
65
  # Visualization 1: Number of Buildings by County and Agency