File size: 5,926 Bytes
c9224f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import math 
import torch
import torch.nn as nn
import torch.nn.functional as F

##_____________________Define:MODEL-F & MODEL-G_________________

# Positional Encoding 
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=1024):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(0.1)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_len, d_model)
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe.unsqueeze(0))  # (1, max_len, d_model)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)]
        return self.dropout(x)

# Transformer Encoder
class TransformerEncoder(nn.Module):
    def __init__(self, d_model=256, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
        super(TransformerEncoder, self).__init__()
        self.positional_encoding = PositionalEncoding(d_model)
        self.encoder = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout,batch_first=True),
            num_layers=num_layers
        )

    def preprocess_latent(self, Z):
        batch_size, channels, height, width = Z.shape # (batch_size, 256, 32, 32)
        seq_len = height * width
        Z = Z.permute(0, 2, 3, 1).reshape(batch_size, seq_len, channels)  # (batch_size, 1024, 256)
        return Z

    def postprocess_latent(self, Z):
        batch_size, seq_len, channels = Z.shape  # (batch_size, 1024, 256)
        height = width = int(math.sqrt(seq_len))
        Z = Z.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)  # (batch_size, 256, 32, 32)
        return Z

    def forward(self, Z):
        Z = self.preprocess_latent(Z)
        Z = self.positional_encoding(Z)
        Z = self.encoder(Z)
        Z = self.postprocess_latent(Z)
        return Z # latent of transformer      

class TransformerDecoder(nn.Module):
    def __init__(self, d_model=256, nhead=8, num_layers=12, dim_feedforward=1024, dropout=0.1):
        super().__init__()
        self.d_model = d_model
        
        # Enhanced positional encoding
        self.positional_encoding = PositionalEncoding(d_model)
        
        # Multi-layer learnable start tokens
        self.base_start = nn.Parameter(torch.randn(1, 1024, d_model))
        self.start_net = nn.Sequential(
            nn.LayerNorm(d_model),
            nn.Linear(d_model, dim_feedforward),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(dim_feedforward, d_model),
            nn.LayerNorm(d_model)
        )
        
        # Context-aware transformer decoder
        self.decoder = nn.TransformerDecoder(
            nn.TransformerDecoderLayer(
                d_model=d_model,
                nhead=nhead,
                dim_feedforward=dim_feedforward,
                dropout=dropout,
                batch_first=True            
            ),
            num_layers=num_layers
        )
        
        # Output projection with residual
        self.output_layer = nn.Sequential(
            nn.Linear(d_model, d_model*2),
            nn.GELU(),
            nn.Linear(d_model*2, d_model))
        
        self.init_weights()

    def init_weights(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        nn.init.normal_(self.base_start, mean=0, std=0.02)

    def preprocess_latent(self, Z):
        # Convert (B, C, H, W) to (B, H*W, C)
        return Z.permute(0, 2, 3, 1).flatten(1, 2)

    def postprocess_latent(self, Z):
        # Convert (B, H*W, C) back to (B, C, H, W)
        B, L, C = Z.shape
        H = W = int(L**0.5)
        return Z.view(B, H, W, C).permute(0, 3, 1, 2)

    def forward(self, Z, Z1_start_tokens=None, teacher_forcing_ratio=0.5):
        # Process input latent
        Z = self.preprocess_latent(Z)
        #Z = self.positional_encoding(Z)
        
        # Generate enhanced start tokens
        B = Z.size(0)
        base_tokens = self.base_start.expand(B, -1, -1)
        processed_start = self.start_net(base_tokens)
        
        # Teacher forcing integration
        if Z1_start_tokens is not None and teacher_forcing_ratio > 0:
            Z1_processed = self.positional_encoding(self.preprocess_latent(Z1_start_tokens))
            
            # Create mixing mask
            mask = torch.rand(B, 1, 1, device=Z.device) < teacher_forcing_ratio
            processed_start = torch.where(mask, Z1_processed, processed_start)

        # Decoder processing with residual
        decoder_input = self.positional_encoding(processed_start)
        outputs = self.decoder(decoder_input, Z)
        outputs = self.output_layer(outputs + decoder_input)
        
        return self.postprocess_latent(outputs)

class DeepfakeToSourceTransformer(nn.Module):
    def __init__(self, d_model=256, encoder_nhead=8, decoder_nhead=8, num_encoder_layers=6, num_decoder_layers=12, dim_feedforward=1024, dropout=0.1):
        super().__init__()
        self.encoder = TransformerEncoder(
            d_model=d_model, 
            nhead=encoder_nhead, 
            num_layers=num_encoder_layers, 
            dim_feedforward=1024, 
            dropout=dropout
        )
        self.decoder = TransformerDecoder(
            d_model=d_model,
            nhead=decoder_nhead,
            num_layers=num_decoder_layers,
            dim_feedforward=dim_feedforward,
            dropout=dropout
        )

    def forward(self, Z, Z1_start_tokens=None, teacher_forcing_ratio=0.5):
        memory = self.encoder(Z)
        Z1 = self.decoder(memory, Z1_start_tokens, teacher_forcing_ratio=teacher_forcing_ratio)
        return Z1