|
import collections |
|
import os |
|
import tarfile |
|
import urllib |
|
import zipfile |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
from taming.data.helper_types import Annotation |
|
|
|
from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format |
|
from tqdm import tqdm |
|
|
|
string_classes = (str,bytes) |
|
|
|
|
|
def unpack(path): |
|
if path.endswith("tar.gz"): |
|
with tarfile.open(path, "r:gz") as tar: |
|
tar.extractall(path=os.path.split(path)[0]) |
|
elif path.endswith("tar"): |
|
with tarfile.open(path, "r:") as tar: |
|
tar.extractall(path=os.path.split(path)[0]) |
|
elif path.endswith("zip"): |
|
with zipfile.ZipFile(path, "r") as f: |
|
f.extractall(path=os.path.split(path)[0]) |
|
else: |
|
raise NotImplementedError( |
|
"Unknown file extension: {}".format(os.path.splitext(path)[1]) |
|
) |
|
|
|
|
|
def reporthook(bar): |
|
"""tqdm progress bar for downloads.""" |
|
|
|
def hook(b=1, bsize=1, tsize=None): |
|
if tsize is not None: |
|
bar.total = tsize |
|
bar.update(b * bsize - bar.n) |
|
|
|
return hook |
|
|
|
|
|
def get_root(name): |
|
base = "data/" |
|
root = os.path.join(base, name) |
|
os.makedirs(root, exist_ok=True) |
|
return root |
|
|
|
|
|
def is_prepared(root): |
|
return Path(root).joinpath(".ready").exists() |
|
|
|
|
|
def mark_prepared(root): |
|
Path(root).joinpath(".ready").touch() |
|
|
|
|
|
def prompt_download(file_, source, target_dir, content_dir=None): |
|
targetpath = os.path.join(target_dir, file_) |
|
while not os.path.exists(targetpath): |
|
if content_dir is not None and os.path.exists( |
|
os.path.join(target_dir, content_dir) |
|
): |
|
break |
|
print( |
|
"Please download '{}' from '{}' to '{}'.".format(file_, source, targetpath) |
|
) |
|
if content_dir is not None: |
|
print( |
|
"Or place its content into '{}'.".format( |
|
os.path.join(target_dir, content_dir) |
|
) |
|
) |
|
input("Press Enter when done...") |
|
return targetpath |
|
|
|
|
|
def download_url(file_, url, target_dir): |
|
targetpath = os.path.join(target_dir, file_) |
|
os.makedirs(target_dir, exist_ok=True) |
|
with tqdm( |
|
unit="B", unit_scale=True, unit_divisor=1024, miniters=1, desc=file_ |
|
) as bar: |
|
urllib.request.urlretrieve(url, targetpath, reporthook=reporthook(bar)) |
|
return targetpath |
|
|
|
|
|
def download_urls(urls, target_dir): |
|
paths = dict() |
|
for fname, url in urls.items(): |
|
outpath = download_url(fname, url, target_dir) |
|
paths[fname] = outpath |
|
return paths |
|
|
|
|
|
def quadratic_crop(x, bbox, alpha=1.0): |
|
"""bbox is xmin, ymin, xmax, ymax""" |
|
im_h, im_w = x.shape[:2] |
|
bbox = np.array(bbox, dtype=np.float32) |
|
bbox = np.clip(bbox, 0, max(im_h, im_w)) |
|
center = 0.5 * (bbox[0] + bbox[2]), 0.5 * (bbox[1] + bbox[3]) |
|
w = bbox[2] - bbox[0] |
|
h = bbox[3] - bbox[1] |
|
l = int(alpha * max(w, h)) |
|
l = max(l, 2) |
|
|
|
required_padding = -1 * min( |
|
center[0] - l, center[1] - l, im_w - (center[0] + l), im_h - (center[1] + l) |
|
) |
|
required_padding = int(np.ceil(required_padding)) |
|
if required_padding > 0: |
|
padding = [ |
|
[required_padding, required_padding], |
|
[required_padding, required_padding], |
|
] |
|
padding += [[0, 0]] * (len(x.shape) - 2) |
|
x = np.pad(x, padding, "reflect") |
|
center = center[0] + required_padding, center[1] + required_padding |
|
xmin = int(center[0] - l / 2) |
|
ymin = int(center[1] - l / 2) |
|
return np.array(x[ymin : ymin + l, xmin : xmin + l, ...]) |
|
|
|
|
|
def custom_collate(batch): |
|
r"""source: pytorch 1.9.0, only one modification to original code """ |
|
|
|
elem = batch[0] |
|
elem_type = type(elem) |
|
if isinstance(elem, torch.Tensor): |
|
out = None |
|
if torch.utils.data.get_worker_info() is not None: |
|
|
|
|
|
numel = sum([x.numel() for x in batch]) |
|
storage = elem.storage()._new_shared(numel) |
|
out = elem.new(storage) |
|
return torch.stack(batch, 0, out=out) |
|
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ |
|
and elem_type.__name__ != 'string_': |
|
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': |
|
|
|
if np_str_obj_array_pattern.search(elem.dtype.str) is not None: |
|
raise TypeError(default_collate_err_msg_format.format(elem.dtype)) |
|
|
|
return custom_collate([torch.as_tensor(b) for b in batch]) |
|
elif elem.shape == (): |
|
return torch.as_tensor(batch) |
|
elif isinstance(elem, float): |
|
return torch.tensor(batch, dtype=torch.float64) |
|
elif isinstance(elem, int): |
|
return torch.tensor(batch) |
|
elif isinstance(elem, string_classes): |
|
return batch |
|
elif isinstance(elem, collections.abc.Mapping): |
|
return {key: custom_collate([d[key] for d in batch]) for key in elem} |
|
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): |
|
return elem_type(*(custom_collate(samples) for samples in zip(*batch))) |
|
if isinstance(elem, collections.abc.Sequence) and isinstance(elem[0], Annotation): |
|
return batch |
|
elif isinstance(elem, collections.abc.Sequence): |
|
|
|
it = iter(batch) |
|
elem_size = len(next(it)) |
|
if not all(len(elem) == elem_size for elem in it): |
|
raise RuntimeError('each element in list of batch should be of equal size') |
|
transposed = zip(*batch) |
|
return [custom_collate(samples) for samples in transposed] |
|
|
|
raise TypeError(default_collate_err_msg_format.format(elem_type)) |
|
|