|
import json |
|
from itertools import chain |
|
from pathlib import Path |
|
from typing import Iterable, Dict, List, Callable, Any |
|
from collections import defaultdict |
|
|
|
from tqdm import tqdm |
|
|
|
from taming.data.annotated_objects_dataset import AnnotatedObjectsDataset |
|
from taming.data.helper_types import Annotation, ImageDescription, Category |
|
|
|
COCO_PATH_STRUCTURE = { |
|
'train': { |
|
'top_level': '', |
|
'instances_annotations': 'annotations/instances_train2017.json', |
|
'stuff_annotations': 'annotations/stuff_train2017.json', |
|
'files': 'train2017' |
|
}, |
|
'validation': { |
|
'top_level': '', |
|
'instances_annotations': 'annotations/instances_val2017.json', |
|
'stuff_annotations': 'annotations/stuff_val2017.json', |
|
'files': 'val2017' |
|
} |
|
} |
|
|
|
|
|
def load_image_descriptions(description_json: List[Dict]) -> Dict[str, ImageDescription]: |
|
return { |
|
str(img['id']): ImageDescription( |
|
id=img['id'], |
|
license=img.get('license'), |
|
file_name=img['file_name'], |
|
coco_url=img['coco_url'], |
|
original_size=(img['width'], img['height']), |
|
date_captured=img.get('date_captured'), |
|
flickr_url=img.get('flickr_url') |
|
) |
|
for img in description_json |
|
} |
|
|
|
|
|
def load_categories(category_json: Iterable) -> Dict[str, Category]: |
|
return {str(cat['id']): Category(id=str(cat['id']), super_category=cat['supercategory'], name=cat['name']) |
|
for cat in category_json if cat['name'] != 'other'} |
|
|
|
|
|
def load_annotations(annotations_json: List[Dict], image_descriptions: Dict[str, ImageDescription], |
|
category_no_for_id: Callable[[str], int], split: str) -> Dict[str, List[Annotation]]: |
|
annotations = defaultdict(list) |
|
total = sum(len(a) for a in annotations_json) |
|
for ann in tqdm(chain(*annotations_json), f'Loading {split} annotations', total=total): |
|
image_id = str(ann['image_id']) |
|
if image_id not in image_descriptions: |
|
raise ValueError(f'image_id [{image_id}] has no image description.') |
|
category_id = ann['category_id'] |
|
try: |
|
category_no = category_no_for_id(str(category_id)) |
|
except KeyError: |
|
continue |
|
|
|
width, height = image_descriptions[image_id].original_size |
|
bbox = (ann['bbox'][0] / width, ann['bbox'][1] / height, ann['bbox'][2] / width, ann['bbox'][3] / height) |
|
|
|
annotations[image_id].append( |
|
Annotation( |
|
id=ann['id'], |
|
area=bbox[2]*bbox[3], |
|
is_group_of=ann['iscrowd'], |
|
image_id=ann['image_id'], |
|
bbox=bbox, |
|
category_id=str(category_id), |
|
category_no=category_no |
|
) |
|
) |
|
return dict(annotations) |
|
|
|
|
|
class AnnotatedObjectsCoco(AnnotatedObjectsDataset): |
|
def __init__(self, use_things: bool = True, use_stuff: bool = True, **kwargs): |
|
""" |
|
@param data_path: is the path to the following folder structure: |
|
coco/ |
|
βββ annotations |
|
β βββ instances_train2017.json |
|
β βββ instances_val2017.json |
|
β βββ stuff_train2017.json |
|
β βββ stuff_val2017.json |
|
βββ train2017 |
|
β βββ 000000000009.jpg |
|
β βββ 000000000025.jpg |
|
β βββ ... |
|
βββ val2017 |
|
β βββ 000000000139.jpg |
|
β βββ 000000000285.jpg |
|
β βββ ... |
|
@param: split: one of 'train' or 'validation' |
|
@param: desired image size (give square images) |
|
""" |
|
super().__init__(**kwargs) |
|
self.use_things = use_things |
|
self.use_stuff = use_stuff |
|
|
|
with open(self.paths['instances_annotations']) as f: |
|
inst_data_json = json.load(f) |
|
with open(self.paths['stuff_annotations']) as f: |
|
stuff_data_json = json.load(f) |
|
|
|
category_jsons = [] |
|
annotation_jsons = [] |
|
if self.use_things: |
|
category_jsons.append(inst_data_json['categories']) |
|
annotation_jsons.append(inst_data_json['annotations']) |
|
if self.use_stuff: |
|
category_jsons.append(stuff_data_json['categories']) |
|
annotation_jsons.append(stuff_data_json['annotations']) |
|
|
|
self.categories = load_categories(chain(*category_jsons)) |
|
self.filter_categories() |
|
self.setup_category_id_and_number() |
|
|
|
self.image_descriptions = load_image_descriptions(inst_data_json['images']) |
|
annotations = load_annotations(annotation_jsons, self.image_descriptions, self.get_category_number, self.split) |
|
self.annotations = self.filter_object_number(annotations, self.min_object_area, |
|
self.min_objects_per_image, self.max_objects_per_image) |
|
self.image_ids = list(self.annotations.keys()) |
|
self.clean_up_annotations_and_image_descriptions() |
|
|
|
def get_path_structure(self) -> Dict[str, str]: |
|
if self.split not in COCO_PATH_STRUCTURE: |
|
raise ValueError(f'Split [{self.split} does not exist for COCO data.]') |
|
return COCO_PATH_STRUCTURE[self.split] |
|
|
|
def get_image_path(self, image_id: str) -> Path: |
|
return self.paths['files'].joinpath(self.image_descriptions[str(image_id)].file_name) |
|
|
|
def get_image_description(self, image_id: str) -> Dict[str, Any]: |
|
|
|
return self.image_descriptions[image_id]._asdict() |
|
|