|
from pathlib import Path |
|
from typing import Optional, List, Callable, Dict, Any, Union |
|
import warnings |
|
|
|
import PIL.Image as pil_image |
|
from torch import Tensor |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
|
|
from taming.data.conditional_builder.objects_bbox import ObjectsBoundingBoxConditionalBuilder |
|
from taming.data.conditional_builder.objects_center_points import ObjectsCenterPointsConditionalBuilder |
|
from taming.data.conditional_builder.utils import load_object_from_string |
|
from taming.data.helper_types import BoundingBox, CropMethodType, Image, Annotation, SplitType |
|
from taming.data.image_transforms import CenterCropReturnCoordinates, RandomCrop1dReturnCoordinates, \ |
|
Random2dCropReturnCoordinates, RandomHorizontalFlipReturn, convert_pil_to_tensor |
|
|
|
|
|
class AnnotatedObjectsDataset(Dataset): |
|
def __init__(self, data_path: Union[str, Path], split: SplitType, keys: List[str], target_image_size: int, |
|
min_object_area: float, min_objects_per_image: int, max_objects_per_image: int, |
|
crop_method: CropMethodType, random_flip: bool, no_tokens: int, use_group_parameter: bool, |
|
encode_crop: bool, category_allow_list_target: str = "", category_mapping_target: str = "", |
|
no_object_classes: Optional[int] = None): |
|
self.data_path = data_path |
|
self.split = split |
|
self.keys = keys |
|
self.target_image_size = target_image_size |
|
self.min_object_area = min_object_area |
|
self.min_objects_per_image = min_objects_per_image |
|
self.max_objects_per_image = max_objects_per_image |
|
self.crop_method = crop_method |
|
self.random_flip = random_flip |
|
self.no_tokens = no_tokens |
|
self.use_group_parameter = use_group_parameter |
|
self.encode_crop = encode_crop |
|
|
|
self.annotations = None |
|
self.image_descriptions = None |
|
self.categories = None |
|
self.category_ids = None |
|
self.category_number = None |
|
self.image_ids = None |
|
self.transform_functions: List[Callable] = self.setup_transform(target_image_size, crop_method, random_flip) |
|
self.paths = self.build_paths(self.data_path) |
|
self._conditional_builders = None |
|
self.category_allow_list = None |
|
if category_allow_list_target: |
|
allow_list = load_object_from_string(category_allow_list_target) |
|
self.category_allow_list = {name for name, _ in allow_list} |
|
self.category_mapping = {} |
|
if category_mapping_target: |
|
self.category_mapping = load_object_from_string(category_mapping_target) |
|
self.no_object_classes = no_object_classes |
|
|
|
def build_paths(self, top_level: Union[str, Path]) -> Dict[str, Path]: |
|
top_level = Path(top_level) |
|
sub_paths = {name: top_level.joinpath(sub_path) for name, sub_path in self.get_path_structure().items()} |
|
for path in sub_paths.values(): |
|
if not path.exists(): |
|
raise FileNotFoundError(f'{type(self).__name__} data structure error: [{path}] does not exist.') |
|
return sub_paths |
|
|
|
@staticmethod |
|
def load_image_from_disk(path: Path) -> Image: |
|
return pil_image.open(path).convert('RGB') |
|
|
|
@staticmethod |
|
def setup_transform(target_image_size: int, crop_method: CropMethodType, random_flip: bool): |
|
transform_functions = [] |
|
if crop_method == 'none': |
|
transform_functions.append(transforms.Resize((target_image_size, target_image_size))) |
|
elif crop_method == 'center': |
|
transform_functions.extend([ |
|
transforms.Resize(target_image_size), |
|
CenterCropReturnCoordinates(target_image_size) |
|
]) |
|
elif crop_method == 'random-1d': |
|
transform_functions.extend([ |
|
transforms.Resize(target_image_size), |
|
RandomCrop1dReturnCoordinates(target_image_size) |
|
]) |
|
elif crop_method == 'random-2d': |
|
transform_functions.extend([ |
|
Random2dCropReturnCoordinates(target_image_size), |
|
transforms.Resize(target_image_size) |
|
]) |
|
elif crop_method is None: |
|
return None |
|
else: |
|
raise ValueError(f'Received invalid crop method [{crop_method}].') |
|
if random_flip: |
|
transform_functions.append(RandomHorizontalFlipReturn()) |
|
transform_functions.append(transforms.Lambda(lambda x: x / 127.5 - 1.)) |
|
return transform_functions |
|
|
|
def image_transform(self, x: Tensor) -> (Optional[BoundingBox], Optional[bool], Tensor): |
|
crop_bbox = None |
|
flipped = None |
|
for t in self.transform_functions: |
|
if isinstance(t, (RandomCrop1dReturnCoordinates, CenterCropReturnCoordinates, Random2dCropReturnCoordinates)): |
|
crop_bbox, x = t(x) |
|
elif isinstance(t, RandomHorizontalFlipReturn): |
|
flipped, x = t(x) |
|
else: |
|
x = t(x) |
|
return crop_bbox, flipped, x |
|
|
|
@property |
|
def no_classes(self) -> int: |
|
return self.no_object_classes if self.no_object_classes else len(self.categories) |
|
|
|
@property |
|
def conditional_builders(self) -> ObjectsCenterPointsConditionalBuilder: |
|
|
|
if self._conditional_builders is None: |
|
self._conditional_builders = { |
|
'objects_center_points': ObjectsCenterPointsConditionalBuilder( |
|
self.no_classes, |
|
self.max_objects_per_image, |
|
self.no_tokens, |
|
self.encode_crop, |
|
self.use_group_parameter, |
|
getattr(self, 'use_additional_parameters', False) |
|
), |
|
'objects_bbox': ObjectsBoundingBoxConditionalBuilder( |
|
self.no_classes, |
|
self.max_objects_per_image, |
|
self.no_tokens, |
|
self.encode_crop, |
|
self.use_group_parameter, |
|
getattr(self, 'use_additional_parameters', False) |
|
) |
|
} |
|
return self._conditional_builders |
|
|
|
def filter_categories(self) -> None: |
|
if self.category_allow_list: |
|
self.categories = {id_: cat for id_, cat in self.categories.items() if cat.name in self.category_allow_list} |
|
if self.category_mapping: |
|
self.categories = {id_: cat for id_, cat in self.categories.items() if cat.id not in self.category_mapping} |
|
|
|
def setup_category_id_and_number(self) -> None: |
|
self.category_ids = list(self.categories.keys()) |
|
self.category_ids.sort() |
|
if '/m/01s55n' in self.category_ids: |
|
self.category_ids.remove('/m/01s55n') |
|
self.category_ids.append('/m/01s55n') |
|
self.category_number = {category_id: i for i, category_id in enumerate(self.category_ids)} |
|
if self.category_allow_list is not None and self.category_mapping is None \ |
|
and len(self.category_ids) != len(self.category_allow_list): |
|
warnings.warn('Unexpected number of categories: Mismatch with category_allow_list. ' |
|
'Make sure all names in category_allow_list exist.') |
|
|
|
def clean_up_annotations_and_image_descriptions(self) -> None: |
|
image_id_set = set(self.image_ids) |
|
self.annotations = {k: v for k, v in self.annotations.items() if k in image_id_set} |
|
self.image_descriptions = {k: v for k, v in self.image_descriptions.items() if k in image_id_set} |
|
|
|
@staticmethod |
|
def filter_object_number(all_annotations: Dict[str, List[Annotation]], min_object_area: float, |
|
min_objects_per_image: int, max_objects_per_image: int) -> Dict[str, List[Annotation]]: |
|
filtered = {} |
|
for image_id, annotations in all_annotations.items(): |
|
annotations_with_min_area = [a for a in annotations if a.area > min_object_area] |
|
if min_objects_per_image <= len(annotations_with_min_area) <= max_objects_per_image: |
|
filtered[image_id] = annotations_with_min_area |
|
return filtered |
|
|
|
def __len__(self): |
|
return len(self.image_ids) |
|
|
|
def __getitem__(self, n: int) -> Dict[str, Any]: |
|
image_id = self.get_image_id(n) |
|
sample = self.get_image_description(image_id) |
|
sample['annotations'] = self.get_annotation(image_id) |
|
|
|
if 'image' in self.keys: |
|
sample['image_path'] = str(self.get_image_path(image_id)) |
|
sample['image'] = self.load_image_from_disk(sample['image_path']) |
|
sample['image'] = convert_pil_to_tensor(sample['image']) |
|
sample['crop_bbox'], sample['flipped'], sample['image'] = self.image_transform(sample['image']) |
|
sample['image'] = sample['image'].permute(1, 2, 0) |
|
|
|
for conditional, builder in self.conditional_builders.items(): |
|
if conditional in self.keys: |
|
sample[conditional] = builder.build(sample['annotations'], sample['crop_bbox'], sample['flipped']) |
|
|
|
if self.keys: |
|
|
|
sample = {key: sample[key] for key in self.keys} |
|
return sample |
|
|
|
def get_image_id(self, no: int) -> str: |
|
return self.image_ids[no] |
|
|
|
def get_annotation(self, image_id: str) -> str: |
|
return self.annotations[image_id] |
|
|
|
def get_textual_label_for_category_id(self, category_id: str) -> str: |
|
return self.categories[category_id].name |
|
|
|
def get_textual_label_for_category_no(self, category_no: int) -> str: |
|
return self.categories[self.get_category_id(category_no)].name |
|
|
|
def get_category_number(self, category_id: str) -> int: |
|
return self.category_number[category_id] |
|
|
|
def get_category_id(self, category_no: int) -> str: |
|
return self.category_ids[category_no] |
|
|
|
def get_image_description(self, image_id: str) -> Dict[str, Any]: |
|
raise NotImplementedError() |
|
|
|
def get_path_structure(self): |
|
raise NotImplementedError |
|
|
|
def get_image_path(self, image_id: str) -> Path: |
|
raise NotImplementedError |
|
|