|
import random |
|
import warnings |
|
from typing import Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from torchvision.transforms import RandomCrop, functional as F, CenterCrop, RandomHorizontalFlip, PILToTensor |
|
from torchvision.transforms.functional import _get_image_size as get_image_size |
|
|
|
from taming.data.helper_types import BoundingBox, Image |
|
|
|
pil_to_tensor = PILToTensor() |
|
|
|
|
|
def convert_pil_to_tensor(image: Image) -> Tensor: |
|
with warnings.catch_warnings(): |
|
|
|
warnings.simplefilter("ignore") |
|
return pil_to_tensor(image) |
|
|
|
|
|
class RandomCrop1dReturnCoordinates(RandomCrop): |
|
def forward(self, img: Image) -> (BoundingBox, Image): |
|
""" |
|
Additionally to cropping, returns the relative coordinates of the crop bounding box. |
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
|
|
Returns: |
|
Bounding box: x0, y0, w, h |
|
PIL Image or Tensor: Cropped image. |
|
|
|
Based on: |
|
torchvision.transforms.RandomCrop, torchvision 1.7.0 |
|
""" |
|
if self.padding is not None: |
|
img = F.pad(img, self.padding, self.fill, self.padding_mode) |
|
|
|
width, height = get_image_size(img) |
|
|
|
if self.pad_if_needed and width < self.size[1]: |
|
padding = [self.size[1] - width, 0] |
|
img = F.pad(img, padding, self.fill, self.padding_mode) |
|
|
|
if self.pad_if_needed and height < self.size[0]: |
|
padding = [0, self.size[0] - height] |
|
img = F.pad(img, padding, self.fill, self.padding_mode) |
|
|
|
i, j, h, w = self.get_params(img, self.size) |
|
bbox = (j / width, i / height, w / width, h / height) |
|
return bbox, F.crop(img, i, j, h, w) |
|
|
|
|
|
class Random2dCropReturnCoordinates(torch.nn.Module): |
|
""" |
|
Additionally to cropping, returns the relative coordinates of the crop bounding box. |
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
|
|
Returns: |
|
Bounding box: x0, y0, w, h |
|
PIL Image or Tensor: Cropped image. |
|
|
|
Based on: |
|
torchvision.transforms.RandomCrop, torchvision 1.7.0 |
|
""" |
|
|
|
def __init__(self, min_size: int): |
|
super().__init__() |
|
self.min_size = min_size |
|
|
|
def forward(self, img: Image) -> (BoundingBox, Image): |
|
width, height = get_image_size(img) |
|
max_size = min(width, height) |
|
if max_size <= self.min_size: |
|
size = max_size |
|
else: |
|
size = random.randint(self.min_size, max_size) |
|
top = random.randint(0, height - size) |
|
left = random.randint(0, width - size) |
|
bbox = left / width, top / height, size / width, size / height |
|
return bbox, F.crop(img, top, left, size, size) |
|
|
|
|
|
class CenterCropReturnCoordinates(CenterCrop): |
|
@staticmethod |
|
def get_bbox_of_center_crop(width: int, height: int) -> BoundingBox: |
|
if width > height: |
|
w = height / width |
|
h = 1.0 |
|
x0 = 0.5 - w / 2 |
|
y0 = 0. |
|
else: |
|
w = 1.0 |
|
h = width / height |
|
x0 = 0. |
|
y0 = 0.5 - h / 2 |
|
return x0, y0, w, h |
|
|
|
def forward(self, img: Union[Image, Tensor]) -> (BoundingBox, Union[Image, Tensor]): |
|
""" |
|
Additionally to cropping, returns the relative coordinates of the crop bounding box. |
|
Args: |
|
img (PIL Image or Tensor): Image to be cropped. |
|
|
|
Returns: |
|
Bounding box: x0, y0, w, h |
|
PIL Image or Tensor: Cropped image. |
|
Based on: |
|
torchvision.transforms.RandomHorizontalFlip (version 1.7.0) |
|
""" |
|
width, height = get_image_size(img) |
|
return self.get_bbox_of_center_crop(width, height), F.center_crop(img, self.size) |
|
|
|
|
|
class RandomHorizontalFlipReturn(RandomHorizontalFlip): |
|
def forward(self, img: Image) -> (bool, Image): |
|
""" |
|
Additionally to flipping, returns a boolean whether it was flipped or not. |
|
Args: |
|
img (PIL Image or Tensor): Image to be flipped. |
|
|
|
Returns: |
|
flipped: whether the image was flipped or not |
|
PIL Image or Tensor: Randomly flipped image. |
|
|
|
Based on: |
|
torchvision.transforms.RandomHorizontalFlip (version 1.7.0) |
|
""" |
|
if torch.rand(1) < self.p: |
|
return True, F.hflip(img) |
|
return False, img |
|
|