Spaces:
Running
Running
import numpy as np | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
def flip_text(x): | |
return x[::-1] | |
def flip_image(x): | |
return np.fliplr(x) | |
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") | |
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") | |
def generate_summary(text): | |
print(text) | |
inputs = tokenizer([text], max_length=1024, return_tensors='pt', truncation=True) | |
summary_ids = model.generate(inputs['input_ids'], max_new_tokens=100, do_sample=False) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
with gr.Blocks() as main: | |
gr.Markdown("My AI interface") | |
with gr.Tab("Single models"): | |
text_to_summarize = gr.Textbox(label="Text to summarize") | |
summary_output = gr.Textbox(label="Summary") | |
summarize_btn = gr.Button("Summarize") | |
with gr.Tab("Multi models"): | |
with gr.Row(): | |
image_input = gr.Image() | |
image_output = gr.Image() | |
image_button = gr.Button("Flip") | |
# text_button.click(flip_text, inputs=text_input, outputs=text_output) | |
image_button.click(flip_image, inputs=image_input, outputs=image_output) | |
summarize_btn.click(generate_summary, inputs=text_to_summarize, outputs=summary_output) | |
main.launch() | |