Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,32 +2,22 @@
|
|
2 |
import torch
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
|
|
5 |
from langchain.llms import HuggingFacePipeline
|
6 |
-
from transformers import pipeline
|
7 |
from huggingface_hub import login
|
8 |
from pydantic import BaseModel, model_validator
|
9 |
|
10 |
-
#
|
11 |
huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
|
12 |
login(huggingface_token)
|
13 |
|
14 |
-
# Cargar el modelo Llama 3.1
|
15 |
-
model_name = "meta-llama/llama-3.1-8b-instruct"
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
"type": "llama", # Ajusta el tipo seg煤n lo que necesite el modelo
|
20 |
-
"factor": 8.0
|
21 |
-
}
|
22 |
-
|
23 |
-
# Usar transformers pipeline para carga
|
24 |
-
llm_pipeline = pipeline(
|
25 |
-
"text-generation",
|
26 |
-
model=model_name,
|
27 |
-
device=0 if torch.cuda.is_available() else -1,
|
28 |
-
config={"rope_scaling": rope_scaling} # Aqu铆 pasas la configuraci贸n
|
29 |
-
)
|
30 |
-
llm = HuggingFacePipeline(pipeline=llm_pipeline)
|
31 |
|
32 |
# Interfaz de Streamlit
|
33 |
st.title("Cosine Similarity con Llama 3.1")
|
@@ -49,18 +39,16 @@ if uploaded_file is not None:
|
|
49 |
El query es: {query}
|
50 |
"""
|
51 |
|
52 |
-
# Llamar al modelo
|
53 |
try:
|
54 |
-
response =
|
55 |
# Mostrar la respuesta del modelo
|
56 |
st.write("Respuesta del modelo:", response)
|
57 |
-
|
58 |
-
# Procesar la respuesta seg煤n sea necesario
|
59 |
|
60 |
except Exception as e:
|
61 |
st.error(f"Ocurri贸 un error al procesar el modelo: {str(e)}")
|
62 |
|
63 |
-
# Modelo de validaci贸n de datos
|
64 |
class ConsultaModelo(BaseModel):
|
65 |
query: str
|
66 |
|
|
|
2 |
import torch
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from langchain.llms import HuggingFacePipeline
|
|
|
7 |
from huggingface_hub import login
|
8 |
from pydantic import BaseModel, model_validator
|
9 |
|
10 |
+
# Token secreto de Hugging Face
|
11 |
huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
|
12 |
login(huggingface_token)
|
13 |
|
14 |
+
# Cargar manualmente el modelo Llama 3.1
|
15 |
+
model_name = "meta-llama/llama-3.1-8b-instruct"
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
|
19 |
+
# Usar transformers pipeline para cargar el modelo y tokenizer
|
20 |
+
llm_pipeline = HuggingFacePipeline(model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Interfaz de Streamlit
|
23 |
st.title("Cosine Similarity con Llama 3.1")
|
|
|
39 |
El query es: {query}
|
40 |
"""
|
41 |
|
42 |
+
# Llamar al modelo con el prompt
|
43 |
try:
|
44 |
+
response = llm_pipeline(prompt)
|
45 |
# Mostrar la respuesta del modelo
|
46 |
st.write("Respuesta del modelo:", response)
|
|
|
|
|
47 |
|
48 |
except Exception as e:
|
49 |
st.error(f"Ocurri贸 un error al procesar el modelo: {str(e)}")
|
50 |
|
51 |
+
# Modelo de validaci贸n de datos con Pydantic
|
52 |
class ConsultaModelo(BaseModel):
|
53 |
query: str
|
54 |
|