File size: 3,243 Bytes
97daae4 ee42302 97daae4 fecc73e 97daae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import torch
import torch.nn as nn
import onnx
import data, utils
from typing import Tuple, Dict
from train import NUM_CLASSES
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
import torchvision.transforms as T
import onnxruntime as ort
import numpy as np
from timeit import default_timer as timer
from pathlib import Path
PATH = "save_model/food_cpu.onnx"
model = efficientnet_b0(weights=EfficientNet_B0_Weights.DEFAULT)
model.classifier = nn.Sequential(
nn.Dropout(p = 0.2, inplace = True),
nn.Linear(1280, NUM_CLASSES),
# nn.Softmax()
)
model = utils.load_model(model, "save_model/best_model.pth")
utils.onnx_inference(model, PATH, "cpu")
onnx_model = onnx.load(PATH)
onnx_check = onnx.checker.check_model(onnx_model)
classes = data.train_datasets.classes
trn = T.ToPILImage()
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and return prediction and time take."""
# Start the timer
start_time = timer()
# transform the target image and add a batch dimension
img = data.transform(img).unsqueeze(dim = 0)
# inference using onnx
ort_sess = ort.InferenceSession(PATH)
outputs = ort_sess.run(None, {'input': img.numpy()})
predicted = classes[outputs[0][0].argmax(0)]
# print("\n", outputs[0][0], "\n")
outputs = np.array(torch.softmax(torch.from_numpy(outputs[0]), dim = 1))
pred_labels_and_prob = {classes[i]: float(outputs[0][i]) for i in range(len(classes))}
# print(f'Predicted: "{predicted}"')
# Calculate the predicion time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_prob, pred_time
image = trn(data.test_datasets[3][0])
exp_dir = "./example_data/"
test_data_paths = list(Path(exp_dir).glob("*.jpg"))
# print(test_data_paths)
example_list = [[str(filepath)] for filepath in test_data_paths]
# print(example_list)
# pred_dict, pred_time = predict(img = image)
# print(f"Predicted label and probability: {pred_dict}")
# print(f"Prediction time: {pred_time}")
title = "FoodVision ππ₯©π£"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food in 101 different classes."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=101, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
# demo.launch(debug=False, # print errors locally?
# share=True) # generate a publically shareable URL?
demo.launch(share=True) |