Food app for food classification
Browse files- README.md +4 -0
- hyperpara.py +0 -1
- inference.py +1 -2
README.md
CHANGED
@@ -14,3 +14,7 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
14 |
|
15 |
|
16 |
LIVE DEPLOYMENT AT: https://huggingface.co/spaces/mrdbourke/foodvision_big
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
LIVE DEPLOYMENT AT: https://huggingface.co/spaces/mrdbourke/foodvision_big
|
17 |
+
ONNX and ONNXruntime : use for model optimization
|
18 |
+
OPTUNA: for hyperparameter tuning
|
19 |
+
WANDB: for exprement track
|
20 |
+
GRADIO and HUGGING FACE: for model deployment
|
hyperpara.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import optuna
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import optuna
|
inference.py
CHANGED
@@ -2,10 +2,9 @@ import torch
|
|
2 |
import torch.nn as nn
|
3 |
|
4 |
import onnx
|
5 |
-
import
|
6 |
from train import device, NUM_CLASSES
|
7 |
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
|
8 |
-
from torchmetrics.classification import MulticlassAccuracy
|
9 |
import onnxruntime as ort
|
10 |
import numpy as np
|
11 |
|
|
|
2 |
import torch.nn as nn
|
3 |
|
4 |
import onnx
|
5 |
+
import data, utils
|
6 |
from train import device, NUM_CLASSES
|
7 |
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
|
|
|
8 |
import onnxruntime as ort
|
9 |
import numpy as np
|
10 |
|