Spaces:
Sleeping
Sleeping
File size: 39,594 Bytes
c004cea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
import os
import streamlit as st
from openai import OpenAI
from PyPDF2 import PdfReader
import requests
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
from urllib.parse import urlparse, parse_qs
from pinecone import Pinecone
import uuid
from dotenv import load_dotenv
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from itertools import islice
import unicodedata
import re
from tiktoken import encoding_for_model
import json
import datetime
import tiktoken
import pandas as pd
import io
from fpdf import FPDF
import tempfile
from PyPDF2 import PdfReader
import base64
from pathlib import Path
import numpy as np
from pymongo import MongoClient
import traceback
from docx import Document
import pandas as pd
import io
import time
import traceback
load_dotenv()
# Set up OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Set up Pinecone
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
# Get index name and URL from .env
index_name = os.getenv("PINECONE_INDEX_NAME")
index_url = os.getenv("PINECONE_INDEX_URL")
index = pc.Index(index_name, url=index_url)
# Set up MongoDB connection
mongo_client = MongoClient(os.getenv("MONGODB_URI"))
db = mongo_client.get_database("finance")
users_collection = db["users"]
def get_embedding(text):
response = client.embeddings.create(input=text, model="text-embedding-3-large")
return response.data[0].embedding
def chunk_text(text, content_type):
sanitized_text = sanitize_text(text)
if content_type == "YouTube":
chunk_size = 2000 # Adjust this value as needed
content_length = len(sanitized_text)
return [sanitized_text[i:i+chunk_size] for i in range(0, content_length, chunk_size)]
else: # Default for PDF and Web Link
chunk_size = 2000
content_length = len(sanitized_text)
return [sanitized_text[i:i+chunk_size] for i in range(0, content_length, chunk_size)]
def process_pdf(file):
reader = PdfReader(file)
text = []
for page in reader.pages:
text.append(page.extract_text())
return " ".join(text) # Join all pages into a single string
def process_web_link(url):
response = requests.get(url)
return chunk_text(response.text, "Web")
def process_youtube_link(url):
try:
video_id = extract_video_id(url)
transcript = YouTubeTranscriptApi.get_transcript(video_id)
full_text = " ".join([entry['text'] for entry in transcript])
print("Transcript obtained from YouTube API")
return chunk_text(full_text, "YouTube") # Use chunk_text function to split large transcripts
except NoTranscriptFound:
print("No transcript found for this YouTube video.")
return []
except TranscriptsDisabled:
print("Transcripts are disabled for this YouTube video.")
return []
except Exception as e:
print(f"An error occurred while processing the YouTube link: {str(e)}")
return []
def extract_video_id(url):
parsed_url = urlparse(url)
if parsed_url.hostname == 'youtu.be':
return parsed_url.path[1:]
if parsed_url.hostname in ('www.youtube.com', 'youtube.com'):
if parsed_url.path == '/watch':
return parse_qs(parsed_url.query)['v'][0]
if parsed_url.path[:7] == '/embed/':
return parsed_url.path.split('/')[2]
if parsed_url.path[:3] == '/v/':
return parsed_url.path.split('/')[2]
return None
def process_upload(upload_type, file_or_link, file_name=None):
print(f"Starting process_upload for {upload_type}")
doc_id = str(uuid.uuid4())
print(f"Generated doc_id: {doc_id}")
if upload_type == "PDF":
chunks = process_pdf(file_or_link)
doc_name = file_name or "Uploaded PDF"
elif upload_type == "Web Link":
chunks = process_web_link(file_or_link)
doc_name = file_or_link
elif upload_type == "YouTube Link":
chunks = process_youtube_link(file_or_link)
doc_name = f"YouTube: {file_or_link}"
else:
print("Invalid upload type")
return "Invalid upload type"
vectors = []
with ThreadPoolExecutor() as executor:
futures = [executor.submit(process_chunk, chunk, doc_id, i, upload_type, doc_name) for i, chunk in enumerate(chunks)]
for future in as_completed(futures):
vectors.append(future.result())
# Update progress
progress = len(vectors) / len(chunks)
st.session_state.upload_progress.progress(progress)
print(f"Generated {len(vectors)} vectors")
# Upsert vectors in batches
batch_size = 100 # Adjust this value as needed
for i in range(0, len(vectors), batch_size):
batch = list(islice(vectors, i, i + batch_size))
index.upsert(vectors=batch)
print(f"Upserted batch {i//batch_size + 1} of {len(vectors)//batch_size + 1}")
print("All vectors upserted to Pinecone")
return f"Processing complete for {upload_type}. Document Name: {doc_name}"
def process_chunk(chunk, doc_id, i, upload_type, doc_name):
# Sanitize the chunk text
sanitized_chunk = sanitize_text(chunk)
embedding = get_embedding(sanitized_chunk)
return (f"{doc_id}_{i}", embedding, {
"text": sanitized_chunk,
"type": upload_type,
"doc_id": doc_id,
"doc_name": doc_name,
"chunk_index": i
})
def sanitize_text(text):
# Remove control characters and normalize Unicode
return ''.join(ch for ch in unicodedata.normalize('NFKD', text) if unicodedata.category(ch)[0] != 'C')
def get_relevant_context(query, top_k=5):
print(f"Getting relevant context for query: {query}")
query_embedding = get_embedding(query)
search_results = index.query(vector=query_embedding, top_k=top_k, include_metadata=True)
print(f"Found {len(search_results['matches'])} relevant results")
# Sort results by similarity score (higher is better)
sorted_results = sorted(search_results['matches'], key=lambda x: x['score'], reverse=True)
context = "\n".join([result['metadata']['text'] for result in sorted_results])
return context, sorted_results
def truncate_context(context, max_tokens):
enc = encoding_for_model("gpt-4o-mini")
encoded = enc.encode(context)
if len(encoded) > max_tokens:
return enc.decode(encoded[:max_tokens])
return context
def chat_with_ai(message):
print(f"Chatting with AI, message: {message}")
context, results = get_relevant_context(message)
print(f"Retrieved context, length: {len(context)}")
# Truncate context if it's too long
max_tokens = 7000 # Leave some room for the system message and user query
context = truncate_context(context, max_tokens)
messages = [
{"role": "system", "content": "You are a helpful assistant. Use the following information to answer the user's question, but don't mention the context directly in your response. If the information isn't in the context, say you don't know."},
{"role": "system", "content": f"Context: {context}"},
{"role": "user", "content": message}
]
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages
)
print("Received response from OpenAI")
ai_response = response.choices[0].message.content
# Prepare source information
sources = [
{
"doc_id": result['metadata']['doc_id'],
"doc_name": result['metadata']['doc_name'],
"chunk_index": result['metadata']['chunk_index'],
"text": result['metadata']['text'],
"type": result['metadata']['type'],
"score": result['score']
}
for result in results
]
return ai_response, sources
def process_youtube_links(links):
results = []
for link in links:
result = process_upload("YouTube Link", link.strip())
results.append(result)
return results
def process_excel(file):
dfs = pd.read_excel(file, sheet_name=None) # Read all sheets
for sheet_name, df in dfs.items():
df.columns = df.columns.astype(str)
# Remove any unnamed columns
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
return dfs
def analyze_and_generate_formulas(main_df, other_dfs):
# Focus on the 'DETAILS' column and the month columns
details_column = main_df.columns[0]
month_columns = main_df.columns[1:-1] # Exclude the 'Total' column
main_summary = f"DETAILS column data: {main_df[details_column].tolist()}\n"
for month in month_columns:
main_summary += f"{month} column data: {main_df[month].tolist()}\n"
other_sheets_summary = ""
for name, df in other_dfs.items():
if len(df.columns) > 0:
other_sheets_summary += f"\nSheet '{name}' structure:\n"
other_sheets_summary += f"Columns: {df.columns.tolist()}\n"
other_sheets_summary += f"First few rows:\n{df.head().to_string()}\n"
prompt = f"""Analyze the following Excel data and generate Python formulas to fill missing values:
Main Sheet Structure:
{main_summary}
Other Sheets:
{other_sheets_summary}
Provide Python formulas using pandas to fill missing values in the month columns of the main sheet.
Use pandas and numpy functions where appropriate. If a value cannot be determined, use None.
Return a dictionary with column names as keys and formulas as values.
Example of the expected format: {{'Apr'24': "df['Apr'24'].fillna(method='ffill')"}}
"""
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a data analysis expert skilled in creating concise formulas for data filling."},
{"role": "user", "content": prompt}
]
)
formulas = eval(response.choices[0].message.content.strip())
print(f"Generated formulas: {formulas}")
return formulas
except Exception as e:
print(f"Error in analyze_and_generate_formulas: {str(e)}")
print(traceback.format_exc())
return {}
def apply_formulas(main_df, other_dfs, formulas):
filled_df = main_df.copy()
for column, formula in formulas.items():
if column in filled_df.columns:
try:
print(f"Applying formula for column {column}: {formula}")
# Create a local namespace with all dataframes
namespace = {'df': filled_df, 'np': np, 'pd': pd}
# Execute the formula in the namespace
exec(f"result = {formula}", namespace)
# Apply the result to the column
filled_df[column] = namespace['result']
print(f"Successfully applied formula for column {column}")
except Exception as e:
print(f"Error applying formula for column {column}: {str(e)}")
print(traceback.format_exc())
return filled_df
def excel_to_pdf(df):
pdf = FPDF(orientation='L', unit='mm', format='A4')
pdf.add_page()
pdf.set_font("Arial", size=8)
# Calculate column widths
col_widths = [pdf.get_string_width(str(col)) + 6 for col in df.columns]
# Write header
for i, col in enumerate(df.columns):
pdf.cell(col_widths[i], 10, str(col), border=1)
pdf.ln()
# Write data
for _, row in df.iterrows():
for i, value in enumerate(row):
pdf.cell(col_widths[i], 10, str(value), border=1)
pdf.ln()
# Save to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
pdf.output(temp_file.name)
return temp_file.name
def pdf_to_text(pdf_path):
with open(pdf_path, 'rb') as file:
pdf = PdfReader(file)
text = []
for page in pdf.pages:
text.append(page.extract_text())
return text
def get_user_feedback(user_id):
user = users_collection.find_one({"_id": user_id})
return user.get("feedback", "") if user else ""
def get_category_reports():
return {
"Default": [], # Changed from "None" to "Default"
"Sales KPI": [
"Monthwise Sales Table", "Customer-wise Sales Table (top 10)", "Qty Sales",
"Customer-wise Churn", "Avg Sales per Customer", "Product-wise Sales Rate",
"Geography-wise", "Trend Analysis", "Graphs", "Month-wise Comparison"
],
"Expenses KPI": [
"Vendor-wise Comparison", "Year on Year Monthwise", "Division-wise"
],
"Purchase Register": [
"Vendor-wise Monthwise", "Monthwise", "Material-wise Purchase Rate Analysis"
],
"Balance Sheet": [
"Year on Year Comparison", "Ratios"
]
}
def analyze_excel_with_gpt(df, sheet_name, user_feedback, category, reports_needed, use_assistants_api=False):
if use_assistants_api:
return process_excel_with_assistant(df, category, reports_needed, user_feedback)
else:
# Existing OCR-based analysis code
prompt = f"""Analyze the following Excel data from sheet '{sheet_name}':
{df.to_string()}
User's previous feedback and insights:
{user_feedback}
"""
if category != "general":
prompt += f"""Please provide analysis and insights based on the following required reports for the category '{category}':
{', '.join(reports_needed)}
Please provide:
1. A comprehensive overview of the data focusing on the {category} category
2. Key observations and trends related to the required reports
3. Any anomalies, interesting patterns, or correlations relevant to the {category}
4. Suggestions for further analysis or visualization based on the required reports
5. Address any previous feedback or insights mentioned above, if applicable
Focus on providing a thorough analysis of all aspects of the data relevant to the {category} and the specified reports."""
else:
prompt += """Please provide a general analysis of the data, including:
1. A comprehensive overview of the data
2. Key observations and trends
3. Any anomalies, interesting patterns, or correlations
4. Suggestions for further analysis or visualization
5. Address any previous feedback or insights mentioned above, if applicable
Focus on providing a thorough analysis of all aspects of the data."""
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": f"You are a data analyst expert in interpreting Excel data for {'general' if category == 'general' else category} analysis."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
def analyze_document_with_gpt(document_content, user_feedback, category, reports_needed, use_assistants_api=False, file_id=None):
if use_assistants_api:
assistant = client.beta.assistants.create(
name="Document Analyzer",
instructions=f"You are a document analysis expert. Analyze the uploaded document and provide insights based on the category: {category}.",
model="gpt-4-1106-preview"
)
thread = client.beta.threads.create()
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=f"Analyze the document with file ID: {file_id}. Category: {category}. Required reports: {', '.join(reports_needed)}. User feedback: {user_feedback}",
file_ids=[file_id]
)
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant.id
)
while run.status != "completed":
run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
time.sleep(1)
messages = client.beta.threads.messages.list(thread_id=thread.id)
return messages.data[0].content[0].text.value
else:
# Existing OCR-based analysis code
prompt = f"""Analyze the following document content:
{document_content}
User's previous feedback and insights:
{user_feedback}
"""
if category != "general":
prompt += f"""Please provide analysis and insights based on the following required reports for the category '{category}':
{', '.join(reports_needed)}
Please provide:
1. A comprehensive overview of the content focusing on the {category} category
2. Key points and main ideas related to the required reports
3. Any interesting patterns or unique aspects relevant to the {category}
4. Suggestions for further analysis or insights based on the required reports
5. Any limitations of the analysis due to the document format or OCR process
6. Address any previous feedback or insights mentioned above, if applicable
Focus on providing a thorough analysis of all aspects of the content relevant to the {category} and the specified reports."""
else:
prompt += """Please provide a general analysis of the document content, including:
1. A comprehensive overview of the content
2. Key points and main ideas
3. Any interesting patterns or unique aspects
4. Suggestions for further analysis or insights
5. Any limitations of the analysis due to the document format or OCR process
6. Address any previous feedback or insights mentioned above, if applicable
Focus on providing a thorough analysis of all aspects of the content."""
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": f"You are a data analyst expert in interpreting complex document content for {'general' if category == 'general' else category} analysis."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
def process_uploaded_file(uploaded_file):
file_type = uploaded_file.type
if file_type in ["application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.ms-excel"]:
# Process Excel file
dfs = process_excel(uploaded_file)
return "excel", dfs
elif file_type == "application/pdf":
# Process PDF file using PyPDF2
try:
pdf_reader = PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return "text", text
except Exception as e:
st.error(f"Error processing PDF: {str(e)}")
print(f"Error processing PDF: {str(e)}")
print(traceback.format_exc())
return None, None
elif file_type in ["application/vnd.openxmlformats-officedocument.wordprocessingml.document", "application/msword"]:
# Process Word document
try:
doc = Document(io.BytesIO(uploaded_file.read()))
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
return "text", text
except Exception as e:
st.error(f"Error processing Word document: {str(e)}")
print(f"Error processing Word document: {str(e)}")
print(traceback.format_exc())
return None, None
else:
st.error(f"Unsupported file type: {file_type}. Please upload an Excel file, PDF, or Word document.")
return None, None
def chat_with_data(data, user_question, data_type):
if data_type == "excel":
df_string = data.to_string()
data_description = "Excel sheet data"
else: # PDF or Word document
df_string = data
data_description = "document content"
prompt = f"""You are an AI assistant specialized in analyzing {data_description}. You have access to the following data:
{df_string}
Based on this data, please answer the following question:
{user_question}
Provide a detailed and accurate answer based on the given data. If the answer cannot be directly inferred from the data, provide the best possible response based on the available information and your general knowledge about data analysis."""
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": f"You are a data analysis expert skilled in interpreting {data_description}."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
def extract_challan_data(pdf_text):
data = {}
patterns = {
'ITNS No.': r'ITNS No\.\s*:\s*(\d+)',
'TAN': r'TAN\s*:\s*(\w+)',
'Name': r'Name\s*:\s*(.+)',
'Assessment Year': r'Assessment Year\s*:\s*(\d{4}-\d{2})',
'Financial Year': r'Financial Year\s*:\s*(\d{4}-\d{2})',
'Amount': r'Amount \(in Rs\.\)\s*:\s*₹\s*([\d,]+)',
'CIN': r'CIN\s*:\s*(\w+)',
'Date of Deposit': r'Date of Deposit\s*:\s*(\d{2}-\w{3}-\d{4})',
'Challan No': r'Challan No\s*:\s*(\d+)',
}
for key, pattern in patterns.items():
match = re.search(pattern, pdf_text)
if match:
data[key] = match.group(1)
else:
data[key] = 'N/A'
return data
def process_challan_pdfs(pdf_files):
all_data = []
for pdf_file in pdf_files:
pdf_text = process_pdf(pdf_file)
challan_data = extract_challan_data(pdf_text)
all_data.append(challan_data)
df = pd.DataFrame(all_data)
return df
def process_file_with_assistant(file, file_type, category, reports_needed, user_feedback):
print(f"Starting {file_type} processing with Assistant")
try:
# Upload the file to OpenAI
uploaded_file = client.files.create(
file=file,
purpose='assistants'
)
print(f"File uploaded successfully. File ID: {uploaded_file.id}")
# Create an assistant
assistant = client.beta.assistants.create(
name=f"{file_type} Analyzer",
instructions=f"You are an expert in analyzing {file_type} files, focusing on {category}. Provide insights and summaries of the content based on the following reports: {', '.join(reports_needed)}. Consider the user's previous feedback: {user_feedback}",
model="gpt-4o",
tools=[{"type": "file_search"}]
)
print(f"Assistant created. Assistant ID: {assistant.id}")
# Create a thread
thread = client.beta.threads.create()
print(f"Thread created. Thread ID: {thread.id}")
# Add a message to the thread with the file attachment
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=f"Please analyze this file and provide insights for the {category} category, focusing on the following reports: {', '.join(reports_needed)}.",
attachments=[
{"file_id": uploaded_file.id, "tools": [{"type": "file_search"}]}
]
)
print(f"Message added to thread. Message ID: {message.id}")
# Run the assistant
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant.id
)
print(f"Run created. Run ID: {run.id}")
# Wait for the run to complete
while run.status != 'completed':
run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
print(f"Run status: {run.status}")
time.sleep(1)
# Retrieve the messages
messages = client.beta.threads.messages.list(thread_id=thread.id)
# Extract the assistant's response
analysis_result = next((msg.content[0].text.value for msg in messages if msg.role == 'assistant'), None)
print(f"{file_type} analysis completed successfully")
return analysis_result
except Exception as e:
print(f"Error in process_file_with_assistant: {str(e)}")
print(traceback.format_exc())
return None
# Streamlit UI
st.set_page_config(layout="wide")
st.title("Document Processing, Chat, Excel Filling, and Analysis")
# Add login/signup system
if "user" not in st.session_state:
st.session_state.user = None
def login(username, password):
user = users_collection.find_one({"username": username})
if user and user.get("password") == password:
return user
return None
def signup(username, password):
existing_user = users_collection.find_one({"username": username})
if existing_user:
return False
users_collection.insert_one({
"username": username,
"password": password,
"feedback": [] # Initialize an empty list for feedback
})
return True
def store_feedback(username, feedback):
users_collection.update_one(
{"username": username},
{"$push": {"feedback": feedback}},
upsert=True
)
# Login/Signup form
if not st.session_state.user:
tab1, tab2 = st.tabs(["Login", "Sign Up"])
with tab1:
st.subheader("Login")
login_username = st.text_input("Username", key="login_username")
login_password = st.text_input("Password", type="password", key="login_password")
if st.button("Login"):
user = login(login_username, login_password)
if user:
st.session_state.user = user
st.success("Logged in successfully!")
st.rerun()
else:
st.error("Invalid username or password")
with tab2:
st.subheader("Sign Up")
signup_username = st.text_input("Username", key="signup_username")
signup_password = st.text_input("Password", type="password", key="signup_password")
if st.button("Sign Up"):
if signup(signup_username, signup_password):
st.success("Account created successfully! Please log in.")
else:
st.error("Username already exists")
if st.session_state.user:
st.write(f"Welcome, {st.session_state.user['username']}!")
# Create four tabs
tab1, tab2, tab3, tab4 = st.tabs(["Upload, Chat, and Source", "Excel Processing", "Excel Analysis and Chat", "Challan Processing"])
with tab1:
st.subheader("Upload")
# PDF upload
uploaded_files = st.file_uploader("Choose one or more PDF files", type="pdf", accept_multiple_files=True)
# Web Link input
web_link = st.text_input("Enter a Web Link")
# YouTube Links input
youtube_links = st.text_area("Enter YouTube Links (one per line)")
if st.button("Process All"):
st.session_state.upload_progress = st.progress(0)
with st.spinner("Processing uploads..."):
results = []
if uploaded_files:
for file in uploaded_files:
pdf_result = process_upload("PDF", file, file.name)
results.append(pdf_result)
if web_link:
web_result = process_upload("Web Link", web_link)
results.append(web_result)
if youtube_links:
youtube_links_list = re.split(r'[\n\r]+', youtube_links.strip())
youtube_results = process_youtube_links(youtube_links_list)
results.extend(youtube_results)
if results:
for result in results:
st.success(result)
else:
st.warning("No content uploaded. Please provide at least one input.")
st.session_state.upload_progress.empty()
st.subheader("Chat")
user_input = st.text_input("Ask a question about the uploaded content:")
if st.button("Send"):
if user_input:
print(f"Sending user input: {user_input}")
st.session_state.chat_progress = st.progress(0)
response, sources = chat_with_ai(user_input)
st.session_state.chat_progress.progress(1.0)
st.markdown("**You:** " + user_input)
st.markdown("**AI:** " + response)
# Store sources in session state for display in the Source Chunks section
st.session_state.sources = sources
st.session_state.chat_progress.empty()
else:
print("Empty user input")
st.warning("Please enter a question.")
st.subheader("Source Chunks")
if 'sources' in st.session_state and st.session_state.sources:
for i, source in enumerate(st.session_state.sources, 1):
with st.expander(f"Source {i} - {source['type']} ({source['doc_name']}) - Score: {source['score']}"):
st.markdown(f"**Chunk Index:** {source['chunk_index']}")
st.text(source['text'])
else:
st.info("Ask a question to see source chunks here.")
with tab2:
st.subheader("Excel Processing")
uploaded_excel = st.file_uploader("Choose an Excel file", type=["xlsx", "xls"])
if uploaded_excel is not None:
dfs = process_excel(uploaded_excel)
# Display preview of each sheet
for sheet_name, df in dfs.items():
if not df.empty:
st.write(f"Preview of {sheet_name}:")
st.dataframe(df.head())
# Select the main sheet for processing
main_sheet = st.selectbox("Select the main sheet to fill", list(dfs.keys()))
main_df = dfs[main_sheet]
if st.button("Fill Missing Data"):
with st.spinner("Analyzing data and generating formulas..."):
other_dfs = {name: df for name, df in dfs.items() if name != main_sheet}
formulas = analyze_and_generate_formulas(main_df, other_dfs)
if formulas:
st.write("Generated Formulas:")
for column, formula in formulas.items():
st.code(f"{column}: {formula}")
filled_df = apply_formulas(main_df, other_dfs, formulas)
st.write("Filled Excel Data:")
st.dataframe(filled_df)
# Provide download link for the filled Excel file
buffer = io.BytesIO()
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
filled_df.to_excel(writer, index=False, sheet_name=main_sheet)
# Also save other sheets
for sheet_name, df in dfs.items():
if sheet_name != main_sheet:
df.to_excel(writer, index=False, sheet_name=sheet_name)
buffer.seek(0)
st.download_button(
label="Download Filled Excel",
data=buffer,
file_name="filled_excel.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
else:
st.warning("No formulas were generated. The data might not have clear patterns for filling missing values.")
with tab3:
st.subheader("Excel and Document Analysis")
uploaded_file = st.file_uploader(
"Choose an Excel file, PDF, or Word document for analysis",
type=["xlsx", "xls", "pdf", "docx", "doc"],
key="excel_analysis_uploader"
)
if uploaded_file is not None:
file_type, content = process_uploaded_file(uploaded_file)
if file_type is not None and content is not None:
if file_type == "excel":
dfs = content
sheet_names = list(dfs.keys())
selected_sheet = st.selectbox("Select a sheet for analysis", sheet_names)
df_to_analyze = dfs[selected_sheet]
st.write(f"Preview of {selected_sheet}:")
st.dataframe(df_to_analyze.head())
st.session_state.analyzed_data = df_to_analyze
analysis_method = "OCR" # Default to OCR for Excel files
elif file_type == "text":
st.write("Document content preview:")
preview_text = content[:500] + "..."
st.text(preview_text) # Show first 500 characters
# Add option to choose between OCR and Assistants API for PDF/Word
analysis_method = st.radio("Choose analysis method:", ("OCR", "OpenAI Assistants API"))
st.session_state.analyzed_data = content
# Add category selection with "Default" option
categories = list(get_category_reports().keys())
if "Default" in categories:
categories.remove("Default")
categories = ["Default"] + categories
selected_category = st.selectbox("Select analysis category", categories)
if st.button("Analyze with GPT"):
with st.spinner("Analyzing data... This may take a while for large datasets."):
user_feedback = get_user_feedback(st.session_state.user["_id"])
reports_needed = get_category_reports().get(selected_category, [])
if file_type == "excel":
analysis_result = analyze_excel_with_gpt(st.session_state.analyzed_data, selected_sheet, user_feedback, selected_category, reports_needed)
else: # PDF or Word document
if analysis_method == "OpenAI Assistants API":
analysis_result = process_file_with_assistant(uploaded_file, "PDF", selected_category, reports_needed, user_feedback)
else:
analysis_result = analyze_document_with_gpt(st.session_state.analyzed_data, user_feedback, selected_category, reports_needed)
st.markdown("## Analysis Results")
st.markdown(analysis_result)
st.session_state.analysis_result = analysis_result
if file_type == "excel":
pdf_path = excel_to_pdf(st.session_state.analyzed_data)
with open(pdf_path, "rb") as pdf_file:
pdf_bytes = pdf_file.read()
st.download_button(
label="Download Excel PDF version",
data=pdf_bytes,
file_name="excel_data.pdf",
mime="application/pdf"
)
# Feedback section
st.markdown("## Feedback")
new_feedback = st.text_area("Provide feedback or additional insights about the analysis:")
if st.button("Submit Feedback"):
if new_feedback:
user = users_collection.find_one({"_id": st.session_state.user["_id"]})
existing_feedback = user.get("feedback", "")
updated_feedback = f"{existing_feedback}\n{new_feedback}" if existing_feedback else new_feedback
users_collection.update_one(
{"_id": st.session_state.user["_id"]},
{"$set": {"feedback": updated_feedback}}
)
st.success("Feedback submitted successfully!")
else:
st.warning("Please enter some feedback before submitting.")
# Chat with Data section
st.markdown("## Chat with Data")
with st.form(key='chat_form'):
user_question = st.text_input("Ask a question about the data:")
chat_submit_button = st.form_submit_button(label='Get Answer')
if chat_submit_button:
if user_question:
with st.spinner("Analyzing your question..."):
answer = chat_with_data(st.session_state.analyzed_data, user_question, file_type)
st.markdown("### Answer")
st.markdown(answer)
else:
st.warning("Please enter a question about the data.")
else:
st.error("Unable to process the uploaded file. Please check the file format and try again.")
with tab4:
st.subheader("Challan Processing")
challan_pdfs = st.file_uploader(
"Choose Challan PDF files",
type="pdf",
accept_multiple_files=True,
key="challan_processing_uploader"
)
if st.button("Process Challan PDFs"):
if challan_pdfs:
with st.spinner("Processing Challan PDFs..."):
challan_df = process_challan_pdfs(challan_pdfs)
st.write("Challan Data:")
st.dataframe(challan_df)
buffer = io.BytesIO()
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
challan_df.to_excel(writer, index=False, sheet_name='Challan Data')
buffer.seek(0)
st.download_button(
label="Download Challan Excel",
data=buffer,
file_name="challan_data.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
st.success("Challan PDFs processed successfully")
else:
st.warning("No Challan PDFs uploaded. Please choose at least one PDF file.") |