Spaces:
Configuration error
Configuration error
Upload 48 files
Browse files- .gitattributes +1 -0
- LICENSE.txt +201 -0
- NotoSans-Regular.ttf +3 -0
- README.md +252 -12
- __init__.py +214 -0
- dev_interface.py +6 -0
- hint_image_enchance.py +233 -0
- install.bat +20 -0
- log.py +80 -0
- lvminthin.py +87 -0
- node_wrappers/anime_face_segment.py +43 -0
- node_wrappers/anyline.py +87 -0
- node_wrappers/binary.py +29 -0
- node_wrappers/canny.py +30 -0
- node_wrappers/color.py +26 -0
- node_wrappers/densepose.py +31 -0
- node_wrappers/depth_anything.py +55 -0
- node_wrappers/depth_anything_v2.py +56 -0
- node_wrappers/diffusion_edge.py +41 -0
- node_wrappers/dsine.py +31 -0
- node_wrappers/dwpose.py +160 -0
- node_wrappers/hed.py +53 -0
- node_wrappers/inpaint.py +27 -0
- node_wrappers/leres.py +32 -0
- node_wrappers/lineart.py +30 -0
- node_wrappers/lineart_anime.py +27 -0
- node_wrappers/lineart_standard.py +27 -0
- node_wrappers/manga_line.py +27 -0
- node_wrappers/mediapipe_face.py +39 -0
- node_wrappers/mesh_graphormer.py +158 -0
- node_wrappers/metric3d.py +57 -0
- node_wrappers/midas.py +59 -0
- node_wrappers/mlsd.py +31 -0
- node_wrappers/normalbae.py +27 -0
- node_wrappers/oneformer.py +50 -0
- node_wrappers/openpose.py +46 -0
- node_wrappers/pidinet.py +30 -0
- node_wrappers/pose_keypoint_postprocess.py +340 -0
- node_wrappers/recolor.py +46 -0
- node_wrappers/scribble.py +74 -0
- node_wrappers/segment_anything.py +27 -0
- node_wrappers/shuffle.py +27 -0
- node_wrappers/teed.py +30 -0
- node_wrappers/tile.py +73 -0
- node_wrappers/uniformer.py +29 -0
- node_wrappers/unimatch.py +75 -0
- node_wrappers/zoe.py +27 -0
- pyproject.toml +14 -0
- requirements.txt +24 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
comfyui_screenshot.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
comfyui_screenshot.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
NotoSans-Regular.ttf filter=lfs diff=lfs merge=lfs -text
|
LICENSE.txt
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
NotoSans-Regular.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b04c8dd65af6b73eb4279472ed1580b29102d6496a377340e80a40cdb3b22c9
|
3 |
+
size 455188
|
README.md
CHANGED
@@ -1,12 +1,252 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ComfyUI's ControlNet Auxiliary Preprocessors
|
2 |
+
Plug-and-play [ComfyUI](https://github.com/comfyanonymous/ComfyUI) node sets for making [ControlNet](https://github.com/lllyasviel/ControlNet/) hint images
|
3 |
+
|
4 |
+
"anime style, a protest in the street, cyberpunk city, a woman with pink hair and golden eyes (looking at the viewer) is holding a sign with the text "ComfyUI ControlNet Aux" in bold, neon pink" on Flux.1 Dev
|
5 |
+
|
6 |
+

|
7 |
+
|
8 |
+
The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to [the 🤗 Hub](https://huggingface.co/lllyasviel/Annotators).
|
9 |
+
|
10 |
+
All credit & copyright goes to https://github.com/lllyasviel.
|
11 |
+
|
12 |
+
# Updates
|
13 |
+
Go to [Update page](./UPDATES.md) to follow updates
|
14 |
+
|
15 |
+
# Installation:
|
16 |
+
## Using ComfyUI Manager (recommended):
|
17 |
+
Install [ComfyUI Manager](https://github.com/ltdrdata/ComfyUI-Manager) and do steps introduced there to install this repo.
|
18 |
+
|
19 |
+
## Alternative:
|
20 |
+
If you're running on Linux, or non-admin account on windows you'll want to ensure `/ComfyUI/custom_nodes` and `comfyui_controlnet_aux` has write permissions.
|
21 |
+
|
22 |
+
There is now a **install.bat** you can run to install to portable if detected. Otherwise it will default to system and assume you followed ConfyUI's manual installation steps.
|
23 |
+
|
24 |
+
If you can't run **install.bat** (e.g. you are a Linux user). Open the CMD/Shell and do the following:
|
25 |
+
- Navigate to your `/ComfyUI/custom_nodes/` folder
|
26 |
+
- Run `git clone https://github.com/Fannovel16/comfyui_controlnet_aux/`
|
27 |
+
- Navigate to your `comfyui_controlnet_aux` folder
|
28 |
+
- Portable/venv:
|
29 |
+
- Run `path/to/ComfUI/python_embedded/python.exe -s -m pip install -r requirements.txt`
|
30 |
+
- With system python
|
31 |
+
- Run `pip install -r requirements.txt`
|
32 |
+
- Start ComfyUI
|
33 |
+
|
34 |
+
# Nodes
|
35 |
+
Please note that this repo only supports preprocessors making hint images (e.g. stickman, canny edge, etc).
|
36 |
+
All preprocessors except Inpaint are intergrated into `AIO Aux Preprocessor` node.
|
37 |
+
This node allow you to quickly get the preprocessor but a preprocessor's own threshold parameters won't be able to set.
|
38 |
+
You need to use its node directly to set thresholds.
|
39 |
+
|
40 |
+
# Nodes (sections are categories in Comfy menu)
|
41 |
+
## Line Extractors
|
42 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
43 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
44 |
+
| Binary Lines | binary | control_scribble |
|
45 |
+
| Canny Edge | canny | control_v11p_sd15_canny <br> control_canny <br> t2iadapter_canny |
|
46 |
+
| HED Soft-Edge Lines | hed | control_v11p_sd15_softedge <br> control_hed |
|
47 |
+
| Standard Lineart | standard_lineart | control_v11p_sd15_lineart |
|
48 |
+
| Realistic Lineart | lineart (or `lineart_coarse` if `coarse` is enabled) | control_v11p_sd15_lineart |
|
49 |
+
| Anime Lineart | lineart_anime | control_v11p_sd15s2_lineart_anime |
|
50 |
+
| Manga Lineart | lineart_anime_denoise | control_v11p_sd15s2_lineart_anime |
|
51 |
+
| M-LSD Lines | mlsd | control_v11p_sd15_mlsd <br> control_mlsd |
|
52 |
+
| PiDiNet Soft-Edge Lines | pidinet | control_v11p_sd15_softedge <br> control_scribble |
|
53 |
+
| Scribble Lines | scribble | control_v11p_sd15_scribble <br> control_scribble |
|
54 |
+
| Scribble XDoG Lines | scribble_xdog | control_v11p_sd15_scribble <br> control_scribble |
|
55 |
+
| Fake Scribble Lines | scribble_hed | control_v11p_sd15_scribble <br> control_scribble |
|
56 |
+
| TEED Soft-Edge Lines | teed | [controlnet-sd-xl-1.0-softedge-dexined](https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-softedge-dexined/blob/main/controlnet-sd-xl-1.0-softedge-dexined.safetensors) <br> control_v11p_sd15_softedge (Theoretically)
|
57 |
+
| Scribble PiDiNet Lines | scribble_pidinet | control_v11p_sd15_scribble <br> control_scribble |
|
58 |
+
| AnyLine Lineart | | mistoLine_fp16.safetensors <br> mistoLine_rank256 <br> control_v11p_sd15s2_lineart_anime <br> control_v11p_sd15_lineart |
|
59 |
+
|
60 |
+
## Normal and Depth Estimators
|
61 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
62 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
63 |
+
| MiDaS Depth Map | (normal) depth | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
64 |
+
| LeReS Depth Map | depth_leres | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
65 |
+
| Zoe Depth Map | depth_zoe | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
66 |
+
| MiDaS Normal Map | normal_map | control_normal |
|
67 |
+
| BAE Normal Map | normal_bae | control_v11p_sd15_normalbae |
|
68 |
+
| MeshGraphormer Hand Refiner ([HandRefinder](https://github.com/wenquanlu/HandRefiner)) | depth_hand_refiner | [control_sd15_inpaint_depth_hand_fp16](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/control_sd15_inpaint_depth_hand_fp16.safetensors) |
|
69 |
+
| Depth Anything | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
|
70 |
+
| Zoe Depth Anything <br> (Basically Zoe but the encoder is replaced with DepthAnything) | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
|
71 |
+
| Normal DSINE | | control_normal/control_v11p_sd15_normalbae |
|
72 |
+
| Metric3D Depth | | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
73 |
+
| Metric3D Normal | | control_v11p_sd15_normalbae |
|
74 |
+
| Depth Anything V2 | | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
|
75 |
+
|
76 |
+
## Faces and Poses Estimators
|
77 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
78 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
79 |
+
| DWPose Estimator | dw_openpose_full | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose |
|
80 |
+
| OpenPose Estimator | openpose (detect_body) <br> openpose_hand (detect_body + detect_hand) <br> openpose_faceonly (detect_face) <br> openpose_full (detect_hand + detect_body + detect_face) | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose |
|
81 |
+
| MediaPipe Face Mesh | mediapipe_face | controlnet_sd21_laion_face_v2 |
|
82 |
+
| Animal Estimator | animal_openpose | [control_sd15_animal_openpose_fp16](https://huggingface.co/huchenlei/animal_openpose/blob/main/control_sd15_animal_openpose_fp16.pth) |
|
83 |
+
|
84 |
+
## Optical Flow Estimators
|
85 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
86 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
87 |
+
| Unimatch Optical Flow | | [DragNUWA](https://github.com/ProjectNUWA/DragNUWA) |
|
88 |
+
|
89 |
+
### How to get OpenPose-format JSON?
|
90 |
+
#### User-side
|
91 |
+
This workflow will save images to ComfyUI's output folder (the same location as output images). If you haven't found `Save Pose Keypoints` node, update this extension
|
92 |
+

|
93 |
+
|
94 |
+
#### Dev-side
|
95 |
+
An array of [OpenPose-format JSON](https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#json-output-format) corresponsding to each frame in an IMAGE batch can be gotten from DWPose and OpenPose using `app.nodeOutputs` on the UI or `/history` API endpoint. JSON output from AnimalPose uses a kinda similar format to OpenPose JSON:
|
96 |
+
```
|
97 |
+
[
|
98 |
+
{
|
99 |
+
"version": "ap10k",
|
100 |
+
"animals": [
|
101 |
+
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
|
102 |
+
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
|
103 |
+
...
|
104 |
+
],
|
105 |
+
"canvas_height": 512,
|
106 |
+
"canvas_width": 768
|
107 |
+
},
|
108 |
+
...
|
109 |
+
]
|
110 |
+
```
|
111 |
+
|
112 |
+
For extension developers (e.g. Openpose editor):
|
113 |
+
```js
|
114 |
+
const poseNodes = app.graph._nodes.filter(node => ["OpenposePreprocessor", "DWPreprocessor", "AnimalPosePreprocessor"].includes(node.type))
|
115 |
+
for (const poseNode of poseNodes) {
|
116 |
+
const openposeResults = JSON.parse(app.nodeOutputs[poseNode.id].openpose_json[0])
|
117 |
+
console.log(openposeResults) //An array containing Openpose JSON for each frame
|
118 |
+
}
|
119 |
+
```
|
120 |
+
|
121 |
+
For API users:
|
122 |
+
Javascript
|
123 |
+
```js
|
124 |
+
import fetch from "node-fetch" //Remember to add "type": "module" to "package.json"
|
125 |
+
async function main() {
|
126 |
+
const promptId = '792c1905-ecfe-41f4-8114-83e6a4a09a9f' //Too lazy to POST /queue
|
127 |
+
let history = await fetch(`http://127.0.0.1:8188/history/${promptId}`).then(re => re.json())
|
128 |
+
history = history[promptId]
|
129 |
+
const nodeOutputs = Object.values(history.outputs).filter(output => output.openpose_json)
|
130 |
+
for (const nodeOutput of nodeOutputs) {
|
131 |
+
const openposeResults = JSON.parse(nodeOutput.openpose_json[0])
|
132 |
+
console.log(openposeResults) //An array containing Openpose JSON for each frame
|
133 |
+
}
|
134 |
+
}
|
135 |
+
main()
|
136 |
+
```
|
137 |
+
|
138 |
+
Python
|
139 |
+
```py
|
140 |
+
import json, urllib.request
|
141 |
+
|
142 |
+
server_address = "127.0.0.1:8188"
|
143 |
+
prompt_id = '' #Too lazy to POST /queue
|
144 |
+
|
145 |
+
def get_history(prompt_id):
|
146 |
+
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
|
147 |
+
return json.loads(response.read())
|
148 |
+
|
149 |
+
history = get_history(prompt_id)[prompt_id]
|
150 |
+
for o in history['outputs']:
|
151 |
+
for node_id in history['outputs']:
|
152 |
+
node_output = history['outputs'][node_id]
|
153 |
+
if 'openpose_json' in node_output:
|
154 |
+
print(json.loads(node_output['openpose_json'][0])) #An list containing Openpose JSON for each frame
|
155 |
+
```
|
156 |
+
## Semantic Segmentation
|
157 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
158 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
159 |
+
| OneFormer ADE20K Segmentor | oneformer_ade20k | control_v11p_sd15_seg |
|
160 |
+
| OneFormer COCO Segmentor | oneformer_coco | control_v11p_sd15_seg |
|
161 |
+
| UniFormer Segmentor | segmentation |control_sd15_seg <br> control_v11p_sd15_seg|
|
162 |
+
|
163 |
+
## T2IAdapter-only
|
164 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
165 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
166 |
+
| Color Pallete | color | t2iadapter_color |
|
167 |
+
| Content Shuffle | shuffle | t2iadapter_style |
|
168 |
+
|
169 |
+
## Recolor
|
170 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
171 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
172 |
+
| Image Luminance | recolor_luminance | [ioclab_sd15_recolor](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/ioclab_sd15_recolor.safetensors) <br> [sai_xl_recolor_256lora](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/sai_xl_recolor_256lora.safetensors) <br> [bdsqlsz_controlllite_xl_recolor_luminance](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/bdsqlsz_controlllite_xl_recolor_luminance.safetensors) |
|
173 |
+
| Image Intensity | recolor_intensity | Idk. Maybe same as above? |
|
174 |
+
|
175 |
+
# Examples
|
176 |
+
> A picture is worth a thousand words
|
177 |
+
|
178 |
+

|
179 |
+

|
180 |
+
|
181 |
+
# Testing workflow
|
182 |
+
https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/ExecuteAll.png
|
183 |
+
Input image: https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/comfyui-controlnet-aux-logo.png
|
184 |
+
|
185 |
+
# Q&A:
|
186 |
+
## Why some nodes doesn't appear after I installed this repo?
|
187 |
+
|
188 |
+
This repo has a new mechanism which will skip any custom node can't be imported. If you meet this case, please create a issue on [Issues tab](https://github.com/Fannovel16/comfyui_controlnet_aux/issues) with the log from the command line.
|
189 |
+
|
190 |
+
## DWPose/AnimalPose only uses CPU so it's so slow. How can I make it use GPU?
|
191 |
+
There are two ways to speed-up DWPose: using TorchScript checkpoints (.torchscript.pt) checkpoints or ONNXRuntime (.onnx). TorchScript way is little bit slower than ONNXRuntime but doesn't require any additional library and still way way faster than CPU.
|
192 |
+
|
193 |
+
A torchscript bbox detector is compatiable with an onnx pose estimator and vice versa.
|
194 |
+
### TorchScript
|
195 |
+
Set `bbox_detector` and `pose_estimator` according to this picture. You can try other bbox detector endings with `.torchscript.pt` to reduce bbox detection time if input images are ideal.
|
196 |
+

|
197 |
+
### ONNXRuntime
|
198 |
+
If onnxruntime is installed successfully and the checkpoint used endings with `.onnx`, it will replace default cv2 backend to take advantage of GPU. Note that if you are using NVidia card, this method currently can only works on CUDA 11.8 (ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) unless you compile onnxruntime yourself.
|
199 |
+
|
200 |
+
1. Know your onnxruntime build:
|
201 |
+
* * NVidia CUDA 11.x or bellow/AMD GPU: `onnxruntime-gpu`
|
202 |
+
* * NVidia CUDA 12.x: `onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/`
|
203 |
+
* * DirectML: `onnxruntime-directml`
|
204 |
+
* * OpenVINO: `onnxruntime-openvino`
|
205 |
+
|
206 |
+
Note that if this is your first time using ComfyUI, please test if it can run on your device before doing next steps.
|
207 |
+
|
208 |
+
2. Add it into `requirements.txt`
|
209 |
+
|
210 |
+
3. Run `install.bat` or pip command mentioned in Installation
|
211 |
+
|
212 |
+

|
213 |
+
|
214 |
+
# Assets files of preprocessors
|
215 |
+
* anime_face_segment: [bdsqlsz/qinglong_controlnet-lllite/Annotators/UNet.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/UNet.pth), [anime-seg/isnetis.ckpt](https://huggingface.co/skytnt/anime-seg/blob/main/isnetis.ckpt)
|
216 |
+
* densepose: [LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r50_fpn_dl.torchscript](https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/blob/main/densepose_r50_fpn_dl.torchscript)
|
217 |
+
* dwpose:
|
218 |
+
* * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx)
|
219 |
+
* * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/dw-ll_ucoco_384_bs5.torchscript.pt), [yzd-v/DWPose/dw-ll_ucoco_384.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/dw-ll_ucoco_384.onnx)
|
220 |
+
* animal_pose (ap10k):
|
221 |
+
* * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx)
|
222 |
+
* * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/rtmpose-m_ap10k_256_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/rtmpose-m_ap10k_256_bs5.torchscript.pt), [hr16/UnJIT-DWPose/rtmpose-m_ap10k_256.onnx](https://huggingface.co/hr16/UnJIT-DWPose/blob/main/rtmpose-m_ap10k_256.onnx)
|
223 |
+
* hed: [lllyasviel/Annotators/ControlNetHED.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/ControlNetHED.pth)
|
224 |
+
* leres: [lllyasviel/Annotators/res101.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/res101.pth), [lllyasviel/Annotators/latest_net_G.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/latest_net_G.pth)
|
225 |
+
* lineart: [lllyasviel/Annotators/sk_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model.pth), [lllyasviel/Annotators/sk_model2.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model2.pth)
|
226 |
+
* lineart_anime: [lllyasviel/Annotators/netG.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/netG.pth)
|
227 |
+
* manga_line: [lllyasviel/Annotators/erika.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/erika.pth)
|
228 |
+
* mesh_graphormer: [hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/graphormer_hand_state_dict.bin), [hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/hrnetv2_w64_imagenet_pretrained.pth)
|
229 |
+
* midas: [lllyasviel/Annotators/dpt_hybrid-midas-501f0c75.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/dpt_hybrid-midas-501f0c75.pt)
|
230 |
+
* mlsd: [lllyasviel/Annotators/mlsd_large_512_fp32.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/mlsd_large_512_fp32.pth)
|
231 |
+
* normalbae: [lllyasviel/Annotators/scannet.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/scannet.pt)
|
232 |
+
* oneformer: [lllyasviel/Annotators/250_16_swin_l_oneformer_ade20k_160k.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/250_16_swin_l_oneformer_ade20k_160k.pth)
|
233 |
+
* open_pose: [lllyasviel/Annotators/body_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/body_pose_model.pth), [lllyasviel/Annotators/hand_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/hand_pose_model.pth), [lllyasviel/Annotators/facenet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/facenet.pth)
|
234 |
+
* pidi: [lllyasviel/Annotators/table5_pidinet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/table5_pidinet.pth)
|
235 |
+
* sam: [dhkim2810/MobileSAM/mobile_sam.pt](https://huggingface.co/dhkim2810/MobileSAM/blob/main/mobile_sam.pt)
|
236 |
+
* uniformer: [lllyasviel/Annotators/upernet_global_small.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/upernet_global_small.pth)
|
237 |
+
* zoe: [lllyasviel/Annotators/ZoeD_M12_N.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/ZoeD_M12_N.pt)
|
238 |
+
* teed: [bdsqlsz/qinglong_controlnet-lllite/7_model.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/7_model.pth)
|
239 |
+
* depth_anything: Either [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitl14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitb14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitb14.pth) or [LiheYoung/Depth-Anything/checkpoints/depth_anything_vits14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vits14.pth)
|
240 |
+
* diffusion_edge: Either [hr16/Diffusion-Edge/diffusion_edge_indoor.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_indoor.pt), [hr16/Diffusion-Edge/diffusion_edge_urban.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_urban.pt) or [hr16/Diffusion-Edge/diffusion_edge_natrual.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_natrual.pt)
|
241 |
+
* unimatch: Either [hr16/Unimatch/gmflow-scale2-regrefine6-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-regrefine6-mixdata.pth), [hr16/Unimatch/gmflow-scale2-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-mixdata.pth) or [hr16/Unimatch/gmflow-scale1-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale1-mixdata.pth)
|
242 |
+
* zoe_depth_anything: Either [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt) or [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt)
|
243 |
+
# 1500 Stars 😄
|
244 |
+
<a href="https://star-history.com/#Fannovel16/comfyui_controlnet_aux&Date">
|
245 |
+
<picture>
|
246 |
+
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date&theme=dark" />
|
247 |
+
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" />
|
248 |
+
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" />
|
249 |
+
</picture>
|
250 |
+
</a>
|
251 |
+
|
252 |
+
Thanks for yalls supports. I never thought the graph for stars would be linear lol.
|
__init__.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys, os
|
2 |
+
from .utils import here, define_preprocessor_inputs, INPUT
|
3 |
+
from pathlib import Path
|
4 |
+
import traceback
|
5 |
+
import importlib
|
6 |
+
from .log import log, blue_text, cyan_text, get_summary, get_label
|
7 |
+
from .hint_image_enchance import NODE_CLASS_MAPPINGS as HIE_NODE_CLASS_MAPPINGS
|
8 |
+
from .hint_image_enchance import NODE_DISPLAY_NAME_MAPPINGS as HIE_NODE_DISPLAY_NAME_MAPPINGS
|
9 |
+
#Ref: https://github.com/comfyanonymous/ComfyUI/blob/76d53c4622fc06372975ed2a43ad345935b8a551/nodes.py#L17
|
10 |
+
sys.path.insert(0, str(Path(here, "src").resolve()))
|
11 |
+
for pkg_name in ["custom_controlnet_aux", "custom_mmpkg"]:
|
12 |
+
sys.path.append(str(Path(here, "src", pkg_name).resolve()))
|
13 |
+
|
14 |
+
#Enable CPU fallback for ops not being supported by MPS like upsample_bicubic2d.out
|
15 |
+
#https://github.com/pytorch/pytorch/issues/77764
|
16 |
+
#https://github.com/Fannovel16/comfyui_controlnet_aux/issues/2#issuecomment-1763579485
|
17 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = os.getenv("PYTORCH_ENABLE_MPS_FALLBACK", '1')
|
18 |
+
|
19 |
+
|
20 |
+
def load_nodes():
|
21 |
+
shorted_errors = []
|
22 |
+
full_error_messages = []
|
23 |
+
node_class_mappings = {}
|
24 |
+
node_display_name_mappings = {}
|
25 |
+
|
26 |
+
for filename in (here / "node_wrappers").iterdir():
|
27 |
+
module_name = filename.stem
|
28 |
+
if module_name.startswith('.'): continue #Skip hidden files created by the OS (e.g. [.DS_Store](https://en.wikipedia.org/wiki/.DS_Store))
|
29 |
+
try:
|
30 |
+
module = importlib.import_module(
|
31 |
+
f".node_wrappers.{module_name}", package=__package__
|
32 |
+
)
|
33 |
+
node_class_mappings.update(getattr(module, "NODE_CLASS_MAPPINGS"))
|
34 |
+
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS"):
|
35 |
+
node_display_name_mappings.update(getattr(module, "NODE_DISPLAY_NAME_MAPPINGS"))
|
36 |
+
|
37 |
+
log.debug(f"Imported {module_name} nodes")
|
38 |
+
|
39 |
+
except AttributeError:
|
40 |
+
pass # wip nodes
|
41 |
+
except Exception:
|
42 |
+
error_message = traceback.format_exc()
|
43 |
+
full_error_messages.append(error_message)
|
44 |
+
error_message = error_message.splitlines()[-1]
|
45 |
+
shorted_errors.append(
|
46 |
+
f"Failed to import module {module_name} because {error_message}"
|
47 |
+
)
|
48 |
+
|
49 |
+
if len(shorted_errors) > 0:
|
50 |
+
full_err_log = '\n\n'.join(full_error_messages)
|
51 |
+
print(f"\n\nFull error log from comfyui_controlnet_aux: \n{full_err_log}\n\n")
|
52 |
+
log.info(
|
53 |
+
f"Some nodes failed to load:\n\t"
|
54 |
+
+ "\n\t".join(shorted_errors)
|
55 |
+
+ "\n\n"
|
56 |
+
+ "Check that you properly installed the dependencies.\n"
|
57 |
+
+ "If you think this is a bug, please report it on the github page (https://github.com/Fannovel16/comfyui_controlnet_aux/issues)"
|
58 |
+
)
|
59 |
+
return node_class_mappings, node_display_name_mappings
|
60 |
+
|
61 |
+
AUX_NODE_MAPPINGS, AUX_DISPLAY_NAME_MAPPINGS = load_nodes()
|
62 |
+
|
63 |
+
#For nodes not mapping image to image or has special requirements
|
64 |
+
AIO_NOT_SUPPORTED = ["InpaintPreprocessor", "MeshGraphormer+ImpactDetector-DepthMapPreprocessor", "DiffusionEdge_Preprocessor"]
|
65 |
+
AIO_NOT_SUPPORTED += ["SavePoseKpsAsJsonFile", "FacialPartColoringFromPoseKps", "UpperBodyTrackingFromPoseKps", "RenderPeopleKps", "RenderAnimalKps"]
|
66 |
+
AIO_NOT_SUPPORTED += ["Unimatch_OptFlowPreprocessor", "MaskOptFlow"]
|
67 |
+
|
68 |
+
def preprocessor_options():
|
69 |
+
auxs = list(AUX_NODE_MAPPINGS.keys())
|
70 |
+
auxs.insert(0, "none")
|
71 |
+
for name in AIO_NOT_SUPPORTED:
|
72 |
+
if name in auxs:
|
73 |
+
auxs.remove(name)
|
74 |
+
return auxs
|
75 |
+
|
76 |
+
|
77 |
+
PREPROCESSOR_OPTIONS = preprocessor_options()
|
78 |
+
|
79 |
+
class AIO_Preprocessor:
|
80 |
+
@classmethod
|
81 |
+
def INPUT_TYPES(s):
|
82 |
+
return define_preprocessor_inputs(
|
83 |
+
preprocessor=INPUT.COMBO(PREPROCESSOR_OPTIONS, default="none"),
|
84 |
+
resolution=INPUT.RESOLUTION()
|
85 |
+
)
|
86 |
+
|
87 |
+
RETURN_TYPES = ("IMAGE",)
|
88 |
+
FUNCTION = "execute"
|
89 |
+
|
90 |
+
CATEGORY = "ControlNet Preprocessors"
|
91 |
+
|
92 |
+
def execute(self, preprocessor, image, resolution=512):
|
93 |
+
if preprocessor == "none":
|
94 |
+
return (image, )
|
95 |
+
else:
|
96 |
+
aux_class = AUX_NODE_MAPPINGS[preprocessor]
|
97 |
+
input_types = aux_class.INPUT_TYPES()
|
98 |
+
input_types = {
|
99 |
+
**input_types["required"],
|
100 |
+
**(input_types["optional"] if "optional" in input_types else {})
|
101 |
+
}
|
102 |
+
params = {}
|
103 |
+
for name, input_type in input_types.items():
|
104 |
+
if name == "image":
|
105 |
+
params[name] = image
|
106 |
+
continue
|
107 |
+
|
108 |
+
if name == "resolution":
|
109 |
+
params[name] = resolution
|
110 |
+
continue
|
111 |
+
|
112 |
+
if len(input_type) == 2 and ("default" in input_type[1]):
|
113 |
+
params[name] = input_type[1]["default"]
|
114 |
+
continue
|
115 |
+
|
116 |
+
default_values = { "INT": 0, "FLOAT": 0.0 }
|
117 |
+
if input_type[0] in default_values:
|
118 |
+
params[name] = default_values[input_type[0]]
|
119 |
+
|
120 |
+
return getattr(aux_class(), aux_class.FUNCTION)(**params)
|
121 |
+
|
122 |
+
class ControlNetAuxSimpleAddText:
|
123 |
+
@classmethod
|
124 |
+
def INPUT_TYPES(s):
|
125 |
+
return dict(
|
126 |
+
required=dict(image=INPUT.IMAGE(), text=INPUT.STRING())
|
127 |
+
)
|
128 |
+
|
129 |
+
RETURN_TYPES = ("IMAGE",)
|
130 |
+
FUNCTION = "execute"
|
131 |
+
CATEGORY = "ControlNet Preprocessors"
|
132 |
+
def execute(self, image, text):
|
133 |
+
from PIL import Image, ImageDraw, ImageFont
|
134 |
+
import numpy as np
|
135 |
+
import torch
|
136 |
+
|
137 |
+
font = ImageFont.truetype(str((here / "NotoSans-Regular.ttf").resolve()), 40)
|
138 |
+
img = Image.fromarray(image[0].cpu().numpy().__mul__(255.).astype(np.uint8))
|
139 |
+
ImageDraw.Draw(img).text((0,0), text, fill=(0,255,0), font=font)
|
140 |
+
return (torch.from_numpy(np.array(img)).unsqueeze(0) / 255.,)
|
141 |
+
|
142 |
+
class ExecuteAllControlNetPreprocessors:
|
143 |
+
@classmethod
|
144 |
+
def INPUT_TYPES(s):
|
145 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
146 |
+
RETURN_TYPES = ("IMAGE",)
|
147 |
+
FUNCTION = "execute"
|
148 |
+
|
149 |
+
CATEGORY = "ControlNet Preprocessors"
|
150 |
+
|
151 |
+
def execute(self, image, resolution=512):
|
152 |
+
try:
|
153 |
+
from comfy_execution.graph_utils import GraphBuilder
|
154 |
+
except:
|
155 |
+
raise RuntimeError("ExecuteAllControlNetPreprocessor requries [Execution Model Inversion](https://github.com/comfyanonymous/ComfyUI/commit/5cfe38). Update ComfyUI/SwarmUI to get this feature")
|
156 |
+
|
157 |
+
graph = GraphBuilder()
|
158 |
+
curr_outputs = []
|
159 |
+
for preprocc in PREPROCESSOR_OPTIONS:
|
160 |
+
preprocc_node = graph.node("AIO_Preprocessor", preprocessor=preprocc, image=image, resolution=resolution)
|
161 |
+
hint_img = preprocc_node.out(0)
|
162 |
+
add_text_node = graph.node("ControlNetAuxSimpleAddText", image=hint_img, text=preprocc)
|
163 |
+
curr_outputs.append(add_text_node.out(0))
|
164 |
+
|
165 |
+
while len(curr_outputs) > 1:
|
166 |
+
_outputs = []
|
167 |
+
for i in range(0, len(curr_outputs), 2):
|
168 |
+
if i+1 < len(curr_outputs):
|
169 |
+
image_batch = graph.node("ImageBatch", image1=curr_outputs[i], image2=curr_outputs[i+1])
|
170 |
+
_outputs.append(image_batch.out(0))
|
171 |
+
else:
|
172 |
+
_outputs.append(curr_outputs[i])
|
173 |
+
curr_outputs = _outputs
|
174 |
+
|
175 |
+
return {
|
176 |
+
"result": (curr_outputs[0],),
|
177 |
+
"expand": graph.finalize(),
|
178 |
+
}
|
179 |
+
|
180 |
+
class ControlNetPreprocessorSelector:
|
181 |
+
@classmethod
|
182 |
+
def INPUT_TYPES(s):
|
183 |
+
return {
|
184 |
+
"required": {
|
185 |
+
"preprocessor": (PREPROCESSOR_OPTIONS,),
|
186 |
+
}
|
187 |
+
}
|
188 |
+
|
189 |
+
RETURN_TYPES = (PREPROCESSOR_OPTIONS,)
|
190 |
+
RETURN_NAMES = ("preprocessor",)
|
191 |
+
FUNCTION = "get_preprocessor"
|
192 |
+
|
193 |
+
CATEGORY = "ControlNet Preprocessors"
|
194 |
+
|
195 |
+
def get_preprocessor(self, preprocessor: str):
|
196 |
+
return (preprocessor,)
|
197 |
+
|
198 |
+
|
199 |
+
NODE_CLASS_MAPPINGS = {
|
200 |
+
**AUX_NODE_MAPPINGS,
|
201 |
+
"AIO_Preprocessor": AIO_Preprocessor,
|
202 |
+
"ControlNetPreprocessorSelector": ControlNetPreprocessorSelector,
|
203 |
+
**HIE_NODE_CLASS_MAPPINGS,
|
204 |
+
"ExecuteAllControlNetPreprocessors": ExecuteAllControlNetPreprocessors,
|
205 |
+
"ControlNetAuxSimpleAddText": ControlNetAuxSimpleAddText
|
206 |
+
}
|
207 |
+
|
208 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
209 |
+
**AUX_DISPLAY_NAME_MAPPINGS,
|
210 |
+
"AIO_Preprocessor": "AIO Aux Preprocessor",
|
211 |
+
"ControlNetPreprocessorSelector": "Preprocessor Selector",
|
212 |
+
**HIE_NODE_DISPLAY_NAME_MAPPINGS,
|
213 |
+
"ExecuteAllControlNetPreprocessors": "Execute All ControlNet Preprocessors"
|
214 |
+
}
|
dev_interface.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from utils import here
|
3 |
+
import sys
|
4 |
+
sys.path.append(str(Path(here, "src")))
|
5 |
+
|
6 |
+
from custom_controlnet_aux import *
|
hint_image_enchance.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .log import log
|
2 |
+
from .utils import ResizeMode, safe_numpy
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
from .utils import get_unique_axis0
|
7 |
+
from .lvminthin import nake_nms, lvmin_thin
|
8 |
+
|
9 |
+
MAX_IMAGEGEN_RESOLUTION = 8192 #https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L42
|
10 |
+
RESIZE_MODES = [ResizeMode.RESIZE.value, ResizeMode.INNER_FIT.value, ResizeMode.OUTER_FIT.value]
|
11 |
+
|
12 |
+
#Port from https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/internal_controlnet/external_code.py#L89
|
13 |
+
class PixelPerfectResolution:
|
14 |
+
@classmethod
|
15 |
+
def INPUT_TYPES(s):
|
16 |
+
return {
|
17 |
+
"required": {
|
18 |
+
"original_image": ("IMAGE", ),
|
19 |
+
"image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
20 |
+
"image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
21 |
+
#https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
|
22 |
+
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
RETURN_TYPES = ("INT",)
|
27 |
+
RETURN_NAMES = ("RESOLUTION (INT)", )
|
28 |
+
FUNCTION = "execute"
|
29 |
+
|
30 |
+
CATEGORY = "ControlNet Preprocessors"
|
31 |
+
|
32 |
+
def execute(self, original_image, image_gen_width, image_gen_height, resize_mode):
|
33 |
+
_, raw_H, raw_W, _ = original_image.shape
|
34 |
+
|
35 |
+
k0 = float(image_gen_height) / float(raw_H)
|
36 |
+
k1 = float(image_gen_width) / float(raw_W)
|
37 |
+
|
38 |
+
if resize_mode == ResizeMode.OUTER_FIT.value:
|
39 |
+
estimation = min(k0, k1) * float(min(raw_H, raw_W))
|
40 |
+
else:
|
41 |
+
estimation = max(k0, k1) * float(min(raw_H, raw_W))
|
42 |
+
|
43 |
+
log.debug(f"Pixel Perfect Computation:")
|
44 |
+
log.debug(f"resize_mode = {resize_mode}")
|
45 |
+
log.debug(f"raw_H = {raw_H}")
|
46 |
+
log.debug(f"raw_W = {raw_W}")
|
47 |
+
log.debug(f"target_H = {image_gen_height}")
|
48 |
+
log.debug(f"target_W = {image_gen_width}")
|
49 |
+
log.debug(f"estimation = {estimation}")
|
50 |
+
|
51 |
+
return (int(np.round(estimation)), )
|
52 |
+
|
53 |
+
class HintImageEnchance:
|
54 |
+
@classmethod
|
55 |
+
def INPUT_TYPES(s):
|
56 |
+
return {
|
57 |
+
"required": {
|
58 |
+
"hint_image": ("IMAGE", ),
|
59 |
+
"image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
60 |
+
"image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
61 |
+
#https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
|
62 |
+
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
RETURN_TYPES = ("IMAGE",)
|
67 |
+
FUNCTION = "execute"
|
68 |
+
|
69 |
+
CATEGORY = "ControlNet Preprocessors"
|
70 |
+
def execute(self, hint_image, image_gen_width, image_gen_height, resize_mode):
|
71 |
+
outs = []
|
72 |
+
for single_hint_image in hint_image:
|
73 |
+
np_hint_image = np.asarray(single_hint_image * 255., dtype=np.uint8)
|
74 |
+
|
75 |
+
if resize_mode == ResizeMode.RESIZE.value:
|
76 |
+
np_hint_image = self.execute_resize(np_hint_image, image_gen_width, image_gen_height)
|
77 |
+
elif resize_mode == ResizeMode.OUTER_FIT.value:
|
78 |
+
np_hint_image = self.execute_outer_fit(np_hint_image, image_gen_width, image_gen_height)
|
79 |
+
else:
|
80 |
+
np_hint_image = self.execute_inner_fit(np_hint_image, image_gen_width, image_gen_height)
|
81 |
+
|
82 |
+
outs.append(torch.from_numpy(np_hint_image.astype(np.float32) / 255.0))
|
83 |
+
|
84 |
+
return (torch.stack(outs, dim=0),)
|
85 |
+
|
86 |
+
def execute_resize(self, detected_map, w, h):
|
87 |
+
detected_map = self.high_quality_resize(detected_map, (w, h))
|
88 |
+
detected_map = safe_numpy(detected_map)
|
89 |
+
return detected_map
|
90 |
+
|
91 |
+
def execute_outer_fit(self, detected_map, w, h):
|
92 |
+
old_h, old_w, _ = detected_map.shape
|
93 |
+
old_w = float(old_w)
|
94 |
+
old_h = float(old_h)
|
95 |
+
k0 = float(h) / old_h
|
96 |
+
k1 = float(w) / old_w
|
97 |
+
safeint = lambda x: int(np.round(x))
|
98 |
+
k = min(k0, k1)
|
99 |
+
|
100 |
+
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
|
101 |
+
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
|
102 |
+
if len(high_quality_border_color) == 4:
|
103 |
+
# Inpaint hijack
|
104 |
+
high_quality_border_color[3] = 255
|
105 |
+
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
|
106 |
+
detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
|
107 |
+
new_h, new_w, _ = detected_map.shape
|
108 |
+
pad_h = max(0, (h - new_h) // 2)
|
109 |
+
pad_w = max(0, (w - new_w) // 2)
|
110 |
+
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
|
111 |
+
detected_map = high_quality_background
|
112 |
+
detected_map = safe_numpy(detected_map)
|
113 |
+
return detected_map
|
114 |
+
|
115 |
+
def execute_inner_fit(self, detected_map, w, h):
|
116 |
+
old_h, old_w, _ = detected_map.shape
|
117 |
+
old_w = float(old_w)
|
118 |
+
old_h = float(old_h)
|
119 |
+
k0 = float(h) / old_h
|
120 |
+
k1 = float(w) / old_w
|
121 |
+
safeint = lambda x: int(np.round(x))
|
122 |
+
k = max(k0, k1)
|
123 |
+
|
124 |
+
detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
|
125 |
+
new_h, new_w, _ = detected_map.shape
|
126 |
+
pad_h = max(0, (new_h - h) // 2)
|
127 |
+
pad_w = max(0, (new_w - w) // 2)
|
128 |
+
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
|
129 |
+
detected_map = safe_numpy(detected_map)
|
130 |
+
return detected_map
|
131 |
+
|
132 |
+
def high_quality_resize(self, x, size):
|
133 |
+
# Written by lvmin
|
134 |
+
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
|
135 |
+
|
136 |
+
inpaint_mask = None
|
137 |
+
if x.ndim == 3 and x.shape[2] == 4:
|
138 |
+
inpaint_mask = x[:, :, 3]
|
139 |
+
x = x[:, :, 0:3]
|
140 |
+
|
141 |
+
if x.shape[0] != size[1] or x.shape[1] != size[0]:
|
142 |
+
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
|
143 |
+
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
|
144 |
+
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
|
145 |
+
is_one_pixel_edge = False
|
146 |
+
is_binary = False
|
147 |
+
if unique_color_count == 2:
|
148 |
+
is_binary = np.min(x) < 16 and np.max(x) > 240
|
149 |
+
if is_binary:
|
150 |
+
xc = x
|
151 |
+
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
152 |
+
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
153 |
+
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
|
154 |
+
all_edge_count = np.where(x > 127)[0].shape[0]
|
155 |
+
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
|
156 |
+
|
157 |
+
if 2 < unique_color_count < 200:
|
158 |
+
interpolation = cv2.INTER_NEAREST
|
159 |
+
elif new_size_is_smaller:
|
160 |
+
interpolation = cv2.INTER_AREA
|
161 |
+
else:
|
162 |
+
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
|
163 |
+
|
164 |
+
y = cv2.resize(x, size, interpolation=interpolation)
|
165 |
+
if inpaint_mask is not None:
|
166 |
+
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
|
167 |
+
|
168 |
+
if is_binary:
|
169 |
+
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
|
170 |
+
if is_one_pixel_edge:
|
171 |
+
y = nake_nms(y)
|
172 |
+
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
173 |
+
y = lvmin_thin(y, prunings=new_size_is_bigger)
|
174 |
+
else:
|
175 |
+
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
176 |
+
y = np.stack([y] * 3, axis=2)
|
177 |
+
else:
|
178 |
+
y = x
|
179 |
+
|
180 |
+
if inpaint_mask is not None:
|
181 |
+
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
|
182 |
+
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
|
183 |
+
y = np.concatenate([y, inpaint_mask], axis=2)
|
184 |
+
|
185 |
+
return y
|
186 |
+
|
187 |
+
|
188 |
+
class ImageGenResolutionFromLatent:
|
189 |
+
@classmethod
|
190 |
+
def INPUT_TYPES(s):
|
191 |
+
return {
|
192 |
+
"required": { "latent": ("LATENT", ) }
|
193 |
+
}
|
194 |
+
|
195 |
+
RETURN_TYPES = ("INT", "INT")
|
196 |
+
RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
|
197 |
+
FUNCTION = "execute"
|
198 |
+
|
199 |
+
CATEGORY = "ControlNet Preprocessors"
|
200 |
+
|
201 |
+
def execute(self, latent):
|
202 |
+
_, _, H, W = latent["samples"].shape
|
203 |
+
return (W * 8, H * 8)
|
204 |
+
|
205 |
+
class ImageGenResolutionFromImage:
|
206 |
+
@classmethod
|
207 |
+
def INPUT_TYPES(s):
|
208 |
+
return {
|
209 |
+
"required": { "image": ("IMAGE", ) }
|
210 |
+
}
|
211 |
+
|
212 |
+
RETURN_TYPES = ("INT", "INT")
|
213 |
+
RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
|
214 |
+
FUNCTION = "execute"
|
215 |
+
|
216 |
+
CATEGORY = "ControlNet Preprocessors"
|
217 |
+
|
218 |
+
def execute(self, image):
|
219 |
+
_, H, W, _ = image.shape
|
220 |
+
return (W, H)
|
221 |
+
|
222 |
+
NODE_CLASS_MAPPINGS = {
|
223 |
+
"PixelPerfectResolution": PixelPerfectResolution,
|
224 |
+
"ImageGenResolutionFromImage": ImageGenResolutionFromImage,
|
225 |
+
"ImageGenResolutionFromLatent": ImageGenResolutionFromLatent,
|
226 |
+
"HintImageEnchance": HintImageEnchance
|
227 |
+
}
|
228 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
229 |
+
"PixelPerfectResolution": "Pixel Perfect Resolution",
|
230 |
+
"ImageGenResolutionFromImage": "Generation Resolution From Image",
|
231 |
+
"ImageGenResolutionFromLatent": "Generation Resolution From Latent",
|
232 |
+
"HintImageEnchance": "Enchance And Resize Hint Images"
|
233 |
+
}
|
install.bat
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
|
3 |
+
set "requirements_txt=%~dp0\requirements.txt"
|
4 |
+
set "python_exec=..\..\..\python_embedded\python.exe"
|
5 |
+
|
6 |
+
echo Installing ComfyUI's ControlNet Auxiliary Preprocessors..
|
7 |
+
|
8 |
+
if exist "%python_exec%" (
|
9 |
+
echo Installing with ComfyUI Portable
|
10 |
+
for /f "delims=" %%i in (%requirements_txt%) do (
|
11 |
+
%python_exec% -s -m pip install "%%i"
|
12 |
+
)
|
13 |
+
) else (
|
14 |
+
echo Installing with system Python
|
15 |
+
for /f "delims=" %%i in (%requirements_txt%) do (
|
16 |
+
pip install "%%i"
|
17 |
+
)
|
18 |
+
)
|
19 |
+
|
20 |
+
pause
|
log.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Cre: https://github.com/melMass/comfy_mtb/blob/main/log.py
|
2 |
+
import logging
|
3 |
+
import re
|
4 |
+
import os
|
5 |
+
|
6 |
+
base_log_level = logging.INFO
|
7 |
+
|
8 |
+
|
9 |
+
# Custom object that discards the output
|
10 |
+
class NullWriter:
|
11 |
+
def write(self, text):
|
12 |
+
pass
|
13 |
+
|
14 |
+
|
15 |
+
class Formatter(logging.Formatter):
|
16 |
+
grey = "\x1b[38;20m"
|
17 |
+
cyan = "\x1b[36;20m"
|
18 |
+
purple = "\x1b[35;20m"
|
19 |
+
yellow = "\x1b[33;20m"
|
20 |
+
red = "\x1b[31;20m"
|
21 |
+
bold_red = "\x1b[31;1m"
|
22 |
+
reset = "\x1b[0m"
|
23 |
+
# format = "%(asctime)s - [%(name)s] - %(levelname)s - %(message)s (%(filename)s:%(lineno)d)"
|
24 |
+
format = "[%(name)s] | %(levelname)s -> %(message)s"
|
25 |
+
|
26 |
+
FORMATS = {
|
27 |
+
logging.DEBUG: purple + format + reset,
|
28 |
+
logging.INFO: cyan + format + reset,
|
29 |
+
logging.WARNING: yellow + format + reset,
|
30 |
+
logging.ERROR: red + format + reset,
|
31 |
+
logging.CRITICAL: bold_red + format + reset,
|
32 |
+
}
|
33 |
+
|
34 |
+
def format(self, record):
|
35 |
+
log_fmt = self.FORMATS.get(record.levelno)
|
36 |
+
formatter = logging.Formatter(log_fmt)
|
37 |
+
return formatter.format(record)
|
38 |
+
|
39 |
+
|
40 |
+
def mklog(name, level=base_log_level):
|
41 |
+
logger = logging.getLogger(name)
|
42 |
+
logger.setLevel(level)
|
43 |
+
|
44 |
+
for handler in logger.handlers:
|
45 |
+
logger.removeHandler(handler)
|
46 |
+
|
47 |
+
ch = logging.StreamHandler()
|
48 |
+
ch.setLevel(level)
|
49 |
+
ch.setFormatter(Formatter())
|
50 |
+
logger.addHandler(ch)
|
51 |
+
|
52 |
+
# Disable log propagation
|
53 |
+
logger.propagate = False
|
54 |
+
|
55 |
+
return logger
|
56 |
+
|
57 |
+
|
58 |
+
# - The main app logger
|
59 |
+
log = mklog(__package__, base_log_level)
|
60 |
+
|
61 |
+
|
62 |
+
def log_user(arg):
|
63 |
+
print("\033[34mComfyUI ControlNet AUX:\033[0m {arg}")
|
64 |
+
|
65 |
+
|
66 |
+
def get_summary(docstring):
|
67 |
+
return docstring.strip().split("\n\n", 1)[0]
|
68 |
+
|
69 |
+
|
70 |
+
def blue_text(text):
|
71 |
+
return f"\033[94m{text}\033[0m"
|
72 |
+
|
73 |
+
|
74 |
+
def cyan_text(text):
|
75 |
+
return f"\033[96m{text}\033[0m"
|
76 |
+
|
77 |
+
|
78 |
+
def get_label(label):
|
79 |
+
words = re.findall(r"(?:^|[A-Z])[a-z]*", label)
|
80 |
+
return " ".join(words).strip()
|
lvminthin.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# High Quality Edge Thinning using Pure Python
|
2 |
+
# Written by Lvmin Zhang
|
3 |
+
# 2023 April
|
4 |
+
# Stanford University
|
5 |
+
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
|
6 |
+
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
|
12 |
+
lvmin_kernels_raw = [
|
13 |
+
np.array([
|
14 |
+
[-1, -1, -1],
|
15 |
+
[0, 1, 0],
|
16 |
+
[1, 1, 1]
|
17 |
+
], dtype=np.int32),
|
18 |
+
np.array([
|
19 |
+
[0, -1, -1],
|
20 |
+
[1, 1, -1],
|
21 |
+
[0, 1, 0]
|
22 |
+
], dtype=np.int32)
|
23 |
+
]
|
24 |
+
|
25 |
+
lvmin_kernels = []
|
26 |
+
lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw]
|
27 |
+
lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw]
|
28 |
+
lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
|
29 |
+
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
|
30 |
+
|
31 |
+
lvmin_prunings_raw = [
|
32 |
+
np.array([
|
33 |
+
[-1, -1, -1],
|
34 |
+
[-1, 1, -1],
|
35 |
+
[0, 0, -1]
|
36 |
+
], dtype=np.int32),
|
37 |
+
np.array([
|
38 |
+
[-1, -1, -1],
|
39 |
+
[-1, 1, -1],
|
40 |
+
[-1, 0, 0]
|
41 |
+
], dtype=np.int32)
|
42 |
+
]
|
43 |
+
|
44 |
+
lvmin_prunings = []
|
45 |
+
lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw]
|
46 |
+
lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw]
|
47 |
+
lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw]
|
48 |
+
lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw]
|
49 |
+
|
50 |
+
|
51 |
+
def remove_pattern(x, kernel):
|
52 |
+
objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel)
|
53 |
+
objects = np.where(objects > 127)
|
54 |
+
x[objects] = 0
|
55 |
+
return x, objects[0].shape[0] > 0
|
56 |
+
|
57 |
+
|
58 |
+
def thin_one_time(x, kernels):
|
59 |
+
y = x
|
60 |
+
is_done = True
|
61 |
+
for k in kernels:
|
62 |
+
y, has_update = remove_pattern(y, k)
|
63 |
+
if has_update:
|
64 |
+
is_done = False
|
65 |
+
return y, is_done
|
66 |
+
|
67 |
+
|
68 |
+
def lvmin_thin(x, prunings=True):
|
69 |
+
y = x
|
70 |
+
for i in range(32):
|
71 |
+
y, is_done = thin_one_time(y, lvmin_kernels)
|
72 |
+
if is_done:
|
73 |
+
break
|
74 |
+
if prunings:
|
75 |
+
y, _ = thin_one_time(y, lvmin_prunings)
|
76 |
+
return y
|
77 |
+
|
78 |
+
|
79 |
+
def nake_nms(x):
|
80 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
81 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
82 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
83 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
84 |
+
y = np.zeros_like(x)
|
85 |
+
for f in [f1, f2, f3, f4]:
|
86 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
87 |
+
return y
|
node_wrappers/anime_face_segment.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
class AnimeFace_SemSegPreprocessor:
|
7 |
+
@classmethod
|
8 |
+
def INPUT_TYPES(s):
|
9 |
+
#This preprocessor is only trained on 512x resolution
|
10 |
+
#https://github.com/siyeong0/Anime-Face-Segmentation/blob/main/predict.py#L25
|
11 |
+
return define_preprocessor_inputs(
|
12 |
+
remove_background_using_abg=INPUT.BOOLEAN(True),
|
13 |
+
resolution=INPUT.RESOLUTION(default=512, min=512, max=512)
|
14 |
+
)
|
15 |
+
|
16 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
17 |
+
RETURN_NAMES = ("IMAGE", "ABG_CHARACTER_MASK (MASK)")
|
18 |
+
FUNCTION = "execute"
|
19 |
+
|
20 |
+
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
|
21 |
+
|
22 |
+
def execute(self, image, remove_background_using_abg=True, resolution=512, **kwargs):
|
23 |
+
from custom_controlnet_aux.anime_face_segment import AnimeFaceSegmentor
|
24 |
+
|
25 |
+
model = AnimeFaceSegmentor.from_pretrained().to(model_management.get_torch_device())
|
26 |
+
if remove_background_using_abg:
|
27 |
+
out_image_with_mask = common_annotator_call(model, image, resolution=resolution, remove_background=True)
|
28 |
+
out_image = out_image_with_mask[..., :3]
|
29 |
+
mask = out_image_with_mask[..., 3:]
|
30 |
+
mask = rearrange(mask, "n h w c -> n c h w")
|
31 |
+
else:
|
32 |
+
out_image = common_annotator_call(model, image, resolution=resolution, remove_background=False)
|
33 |
+
N, H, W, C = out_image.shape
|
34 |
+
mask = torch.ones(N, C, H, W)
|
35 |
+
del model
|
36 |
+
return (out_image, mask)
|
37 |
+
|
38 |
+
NODE_CLASS_MAPPINGS = {
|
39 |
+
"AnimeFace_SemSegPreprocessor": AnimeFace_SemSegPreprocessor
|
40 |
+
}
|
41 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
42 |
+
"AnimeFace_SemSegPreprocessor": "Anime Face Segmentor"
|
43 |
+
}
|
node_wrappers/anyline.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import comfy.model_management as model_management
|
4 |
+
import comfy.utils
|
5 |
+
|
6 |
+
# Requires comfyui_controlnet_aux funcsions and classes
|
7 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
8 |
+
|
9 |
+
def get_intensity_mask(image_array, lower_bound, upper_bound):
|
10 |
+
mask = image_array[:, :, 0]
|
11 |
+
mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0)
|
12 |
+
mask = np.expand_dims(mask, 2).repeat(3, axis=2)
|
13 |
+
return mask
|
14 |
+
|
15 |
+
def combine_layers(base_layer, top_layer):
|
16 |
+
mask = top_layer.astype(bool)
|
17 |
+
temp = 1 - (1 - top_layer) * (1 - base_layer)
|
18 |
+
result = base_layer * (~mask) + temp * mask
|
19 |
+
return result
|
20 |
+
|
21 |
+
class AnyLinePreprocessor:
|
22 |
+
@classmethod
|
23 |
+
def INPUT_TYPES(s):
|
24 |
+
return define_preprocessor_inputs(
|
25 |
+
merge_with_lineart=INPUT.COMBO(["lineart_standard", "lineart_realisitic", "lineart_anime", "manga_line"], default="lineart_standard"),
|
26 |
+
resolution=INPUT.RESOLUTION(default=1280, step=8),
|
27 |
+
lineart_lower_bound=INPUT.FLOAT(default=0),
|
28 |
+
lineart_upper_bound=INPUT.FLOAT(default=1),
|
29 |
+
object_min_size=INPUT.INT(default=36, min=1),
|
30 |
+
object_connectivity=INPUT.INT(default=1, min=1)
|
31 |
+
)
|
32 |
+
|
33 |
+
RETURN_TYPES = ("IMAGE",)
|
34 |
+
RETURN_NAMES = ("image",)
|
35 |
+
|
36 |
+
FUNCTION = "get_anyline"
|
37 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
38 |
+
|
39 |
+
def __init__(self):
|
40 |
+
self.device = model_management.get_torch_device()
|
41 |
+
|
42 |
+
def get_anyline(self, image, merge_with_lineart="lineart_standard", resolution=512, lineart_lower_bound=0, lineart_upper_bound=1, object_min_size=36, object_connectivity=1):
|
43 |
+
from custom_controlnet_aux.teed import TEDDetector
|
44 |
+
from skimage import morphology
|
45 |
+
pbar = comfy.utils.ProgressBar(3)
|
46 |
+
|
47 |
+
# Process the image with MTEED model
|
48 |
+
mteed_model = TEDDetector.from_pretrained("TheMistoAI/MistoLine", "MTEED.pth", subfolder="Anyline").to(self.device)
|
49 |
+
mteed_result = common_annotator_call(mteed_model, image, resolution=resolution, show_pbar=False)
|
50 |
+
mteed_result = mteed_result.numpy()
|
51 |
+
del mteed_model
|
52 |
+
pbar.update(1)
|
53 |
+
|
54 |
+
# Process the image with the lineart standard preprocessor
|
55 |
+
if merge_with_lineart == "lineart_standard":
|
56 |
+
from custom_controlnet_aux.lineart_standard import LineartStandardDetector
|
57 |
+
lineart_standard_detector = LineartStandardDetector()
|
58 |
+
lineart_result = common_annotator_call(lineart_standard_detector, image, guassian_sigma=2, intensity_threshold=3, resolution=resolution, show_pbar=False).numpy()
|
59 |
+
del lineart_standard_detector
|
60 |
+
else:
|
61 |
+
from custom_controlnet_aux.lineart import LineartDetector
|
62 |
+
from custom_controlnet_aux.lineart_anime import LineartAnimeDetector
|
63 |
+
from custom_controlnet_aux.manga_line import LineartMangaDetector
|
64 |
+
lineart_detector = dict(lineart_realisitic=LineartDetector, lineart_anime=LineartAnimeDetector, manga_line=LineartMangaDetector)[merge_with_lineart]
|
65 |
+
lineart_detector = lineart_detector.from_pretrained().to(self.device)
|
66 |
+
lineart_result = common_annotator_call(lineart_detector, image, resolution=resolution, show_pbar=False).numpy()
|
67 |
+
del lineart_detector
|
68 |
+
pbar.update(1)
|
69 |
+
|
70 |
+
final_result = []
|
71 |
+
for i in range(len(image)):
|
72 |
+
_lineart_result = get_intensity_mask(lineart_result[i], lower_bound=lineart_lower_bound, upper_bound=lineart_upper_bound)
|
73 |
+
_cleaned = morphology.remove_small_objects(_lineart_result.astype(bool), min_size=object_min_size, connectivity=object_connectivity)
|
74 |
+
_lineart_result = _lineart_result * _cleaned
|
75 |
+
_mteed_result = mteed_result[i]
|
76 |
+
|
77 |
+
# Combine the results
|
78 |
+
final_result.append(torch.from_numpy(combine_layers(_mteed_result, _lineart_result)))
|
79 |
+
pbar.update(1)
|
80 |
+
return (torch.stack(final_result),)
|
81 |
+
|
82 |
+
NODE_CLASS_MAPPINGS = {
|
83 |
+
"AnyLineArtPreprocessor_aux": AnyLinePreprocessor
|
84 |
+
}
|
85 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
86 |
+
"AnyLineArtPreprocessor_aux": "AnyLine Lineart"
|
87 |
+
}
|
node_wrappers/binary.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Binary_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
bin_threshold=INPUT.INT(default=100, max=255),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, bin_threshold=100, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.binary import BinaryDetector
|
19 |
+
|
20 |
+
return (common_annotator_call(BinaryDetector(), image, bin_threshold=bin_threshold, resolution=resolution), )
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
NODE_CLASS_MAPPINGS = {
|
25 |
+
"BinaryPreprocessor": Binary_Preprocessor
|
26 |
+
}
|
27 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
28 |
+
"BinaryPreprocessor": "Binary Lines"
|
29 |
+
}
|
node_wrappers/canny.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Canny_Edge_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
low_threshold=INPUT.INT(default=100, max=255),
|
9 |
+
high_threshold=INPUT.INT(default=200, max=255),
|
10 |
+
resolution=INPUT.RESOLUTION()
|
11 |
+
)
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
17 |
+
|
18 |
+
def execute(self, image, low_threshold=100, high_threshold=200, resolution=512, **kwargs):
|
19 |
+
from custom_controlnet_aux.canny import CannyDetector
|
20 |
+
|
21 |
+
return (common_annotator_call(CannyDetector(), image, low_threshold=low_threshold, high_threshold=high_threshold, resolution=resolution), )
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
NODE_CLASS_MAPPINGS = {
|
26 |
+
"CannyEdgePreprocessor": Canny_Edge_Preprocessor
|
27 |
+
}
|
28 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
29 |
+
"CannyEdgePreprocessor": "Canny Edge"
|
30 |
+
}
|
node_wrappers/color.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Color_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/T2IAdapter-only"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.color import ColorDetector
|
16 |
+
|
17 |
+
return (common_annotator_call(ColorDetector(), image, resolution=resolution), )
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
NODE_CLASS_MAPPINGS = {
|
22 |
+
"ColorPreprocessor": Color_Preprocessor
|
23 |
+
}
|
24 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
25 |
+
"ColorPreprocessor": "Color Pallete"
|
26 |
+
}
|
node_wrappers/densepose.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class DensePose_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
model=INPUT.COMBO(["densepose_r50_fpn_dl.torchscript", "densepose_r101_fpn_dl.torchscript"]),
|
9 |
+
cmap=INPUT.COMBO(["Viridis (MagicAnimate)", "Parula (CivitAI)"]),
|
10 |
+
resolution=INPUT.RESOLUTION()
|
11 |
+
)
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
17 |
+
|
18 |
+
def execute(self, image, model="densepose_r50_fpn_dl.torchscript", cmap="Viridis (MagicAnimate)", resolution=512):
|
19 |
+
from custom_controlnet_aux.densepose import DenseposeDetector
|
20 |
+
model = DenseposeDetector \
|
21 |
+
.from_pretrained(filename=model) \
|
22 |
+
.to(model_management.get_torch_device())
|
23 |
+
return (common_annotator_call(model, image, cmap="viridis" if "Viridis" in cmap else "parula", resolution=resolution), )
|
24 |
+
|
25 |
+
|
26 |
+
NODE_CLASS_MAPPINGS = {
|
27 |
+
"DensePosePreprocessor": DensePose_Preprocessor
|
28 |
+
}
|
29 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
30 |
+
"DensePosePreprocessor": "DensePose Estimator"
|
31 |
+
}
|
node_wrappers/depth_anything.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Depth_Anything_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
ckpt_name=INPUT.COMBO(
|
9 |
+
["depth_anything_vitl14.pth", "depth_anything_vitb14.pth", "depth_anything_vits14.pth"]
|
10 |
+
),
|
11 |
+
resolution=INPUT.RESOLUTION()
|
12 |
+
)
|
13 |
+
|
14 |
+
RETURN_TYPES = ("IMAGE",)
|
15 |
+
FUNCTION = "execute"
|
16 |
+
|
17 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
18 |
+
|
19 |
+
def execute(self, image, ckpt_name="depth_anything_vitl14.pth", resolution=512, **kwargs):
|
20 |
+
from custom_controlnet_aux.depth_anything import DepthAnythingDetector
|
21 |
+
|
22 |
+
model = DepthAnythingDetector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
|
23 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
24 |
+
del model
|
25 |
+
return (out, )
|
26 |
+
|
27 |
+
class Zoe_Depth_Anything_Preprocessor:
|
28 |
+
@classmethod
|
29 |
+
def INPUT_TYPES(s):
|
30 |
+
return define_preprocessor_inputs(
|
31 |
+
environment=INPUT.COMBO(["indoor", "outdoor"]),
|
32 |
+
resolution=INPUT.RESOLUTION()
|
33 |
+
)
|
34 |
+
|
35 |
+
RETURN_TYPES = ("IMAGE",)
|
36 |
+
FUNCTION = "execute"
|
37 |
+
|
38 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
39 |
+
|
40 |
+
def execute(self, image, environment="indoor", resolution=512, **kwargs):
|
41 |
+
from custom_controlnet_aux.zoe import ZoeDepthAnythingDetector
|
42 |
+
ckpt_name = "depth_anything_metric_depth_indoor.pt" if environment == "indoor" else "depth_anything_metric_depth_outdoor.pt"
|
43 |
+
model = ZoeDepthAnythingDetector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
|
44 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
45 |
+
del model
|
46 |
+
return (out, )
|
47 |
+
|
48 |
+
NODE_CLASS_MAPPINGS = {
|
49 |
+
"DepthAnythingPreprocessor": Depth_Anything_Preprocessor,
|
50 |
+
"Zoe_DepthAnythingPreprocessor": Zoe_Depth_Anything_Preprocessor
|
51 |
+
}
|
52 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
53 |
+
"DepthAnythingPreprocessor": "Depth Anything",
|
54 |
+
"Zoe_DepthAnythingPreprocessor": "Zoe Depth Anything"
|
55 |
+
}
|
node_wrappers/depth_anything_v2.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Depth_Anything_V2_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
ckpt_name=INPUT.COMBO(
|
9 |
+
["depth_anything_v2_vitg.pth", "depth_anything_v2_vitl.pth", "depth_anything_v2_vitb.pth", "depth_anything_v2_vits.pth"],
|
10 |
+
default="depth_anything_v2_vitl.pth"
|
11 |
+
),
|
12 |
+
resolution=INPUT.RESOLUTION()
|
13 |
+
)
|
14 |
+
|
15 |
+
RETURN_TYPES = ("IMAGE",)
|
16 |
+
FUNCTION = "execute"
|
17 |
+
|
18 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
19 |
+
|
20 |
+
def execute(self, image, ckpt_name="depth_anything_v2_vitl.pth", resolution=512, **kwargs):
|
21 |
+
from custom_controlnet_aux.depth_anything_v2 import DepthAnythingV2Detector
|
22 |
+
|
23 |
+
model = DepthAnythingV2Detector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
|
24 |
+
out = common_annotator_call(model, image, resolution=resolution, max_depth=1)
|
25 |
+
del model
|
26 |
+
return (out, )
|
27 |
+
|
28 |
+
""" class Depth_Anything_Metric_V2_Preprocessor:
|
29 |
+
@classmethod
|
30 |
+
def INPUT_TYPES(s):
|
31 |
+
return create_node_input_types(
|
32 |
+
environment=(["indoor", "outdoor"], {"default": "indoor"}),
|
33 |
+
max_depth=("FLOAT", {"min": 0, "max": 100, "default": 20.0, "step": 0.01})
|
34 |
+
)
|
35 |
+
|
36 |
+
RETURN_TYPES = ("IMAGE",)
|
37 |
+
FUNCTION = "execute"
|
38 |
+
|
39 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
40 |
+
|
41 |
+
def execute(self, image, environment, resolution=512, max_depth=20.0, **kwargs):
|
42 |
+
from custom_controlnet_aux.depth_anything_v2 import DepthAnythingV2Detector
|
43 |
+
filename = dict(indoor="depth_anything_v2_metric_hypersim_vitl.pth", outdoor="depth_anything_v2_metric_vkitti_vitl.pth")[environment]
|
44 |
+
model = DepthAnythingV2Detector.from_pretrained(filename=filename).to(model_management.get_torch_device())
|
45 |
+
out = common_annotator_call(model, image, resolution=resolution, max_depth=max_depth)
|
46 |
+
del model
|
47 |
+
return (out, ) """
|
48 |
+
|
49 |
+
NODE_CLASS_MAPPINGS = {
|
50 |
+
"DepthAnythingV2Preprocessor": Depth_Anything_V2_Preprocessor,
|
51 |
+
#"Metric_DepthAnythingV2Preprocessor": Depth_Anything_Metric_V2_Preprocessor
|
52 |
+
}
|
53 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
54 |
+
"DepthAnythingV2Preprocessor": "Depth Anything V2 - Relative",
|
55 |
+
#"Metric_DepthAnythingV2Preprocessor": "Depth Anything V2 - Metric"
|
56 |
+
}
|
node_wrappers/diffusion_edge.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, run_script
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import sys
|
4 |
+
|
5 |
+
def install_deps():
|
6 |
+
try:
|
7 |
+
import sklearn
|
8 |
+
except:
|
9 |
+
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'scikit-learn'])
|
10 |
+
|
11 |
+
class DiffusionEdge_Preprocessor:
|
12 |
+
@classmethod
|
13 |
+
def INPUT_TYPES(s):
|
14 |
+
return define_preprocessor_inputs(
|
15 |
+
environment=INPUT.COMBO(["indoor", "urban", "natrual"]),
|
16 |
+
patch_batch_size=INPUT.INT(default=4, min=1, max=16),
|
17 |
+
resolution=INPUT.RESOLUTION()
|
18 |
+
)
|
19 |
+
|
20 |
+
RETURN_TYPES = ("IMAGE",)
|
21 |
+
FUNCTION = "execute"
|
22 |
+
|
23 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
24 |
+
|
25 |
+
def execute(self, image, environment="indoor", patch_batch_size=4, resolution=512, **kwargs):
|
26 |
+
install_deps()
|
27 |
+
from custom_controlnet_aux.diffusion_edge import DiffusionEdgeDetector
|
28 |
+
|
29 |
+
model = DiffusionEdgeDetector \
|
30 |
+
.from_pretrained(filename = f"diffusion_edge_{environment}.pt") \
|
31 |
+
.to(model_management.get_torch_device())
|
32 |
+
out = common_annotator_call(model, image, resolution=resolution, patch_batch_size=patch_batch_size)
|
33 |
+
del model
|
34 |
+
return (out, )
|
35 |
+
|
36 |
+
NODE_CLASS_MAPPINGS = {
|
37 |
+
"DiffusionEdge_Preprocessor": DiffusionEdge_Preprocessor,
|
38 |
+
}
|
39 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
40 |
+
"DiffusionEdge_Preprocessor": "Diffusion Edge (batch size ↑ => speed ↑, VRAM ↑)",
|
41 |
+
}
|
node_wrappers/dsine.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class DSINE_Normal_Map_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
fov=INPUT.FLOAT(max=365.0, default=60.0),
|
9 |
+
iterations=INPUT.INT(min=1, max=20, default=5),
|
10 |
+
resolution=INPUT.RESOLUTION()
|
11 |
+
)
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
17 |
+
|
18 |
+
def execute(self, image, fov=60.0, iterations=5, resolution=512, **kwargs):
|
19 |
+
from custom_controlnet_aux.dsine import DsineDetector
|
20 |
+
|
21 |
+
model = DsineDetector.from_pretrained().to(model_management.get_torch_device())
|
22 |
+
out = common_annotator_call(model, image, fov=fov, iterations=iterations, resolution=resolution)
|
23 |
+
del model
|
24 |
+
return (out,)
|
25 |
+
|
26 |
+
NODE_CLASS_MAPPINGS = {
|
27 |
+
"DSINE-NormalMapPreprocessor": DSINE_Normal_Map_Preprocessor
|
28 |
+
}
|
29 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
30 |
+
"DSINE-NormalMapPreprocessor": "DSINE Normal Map"
|
31 |
+
}
|
node_wrappers/dwpose.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import numpy as np
|
4 |
+
import warnings
|
5 |
+
from custom_controlnet_aux.dwpose import DwposeDetector, AnimalposeDetector
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
|
9 |
+
DWPOSE_MODEL_NAME = "yzd-v/DWPose"
|
10 |
+
#Trigger startup caching for onnxruntime
|
11 |
+
GPU_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CoreMLExecutionProvider"]
|
12 |
+
def check_ort_gpu():
|
13 |
+
try:
|
14 |
+
import onnxruntime as ort
|
15 |
+
for provider in GPU_PROVIDERS:
|
16 |
+
if provider in ort.get_available_providers():
|
17 |
+
return True
|
18 |
+
return False
|
19 |
+
except:
|
20 |
+
return False
|
21 |
+
|
22 |
+
if not os.environ.get("DWPOSE_ONNXRT_CHECKED"):
|
23 |
+
if check_ort_gpu():
|
24 |
+
print("DWPose: Onnxruntime with acceleration providers detected")
|
25 |
+
else:
|
26 |
+
warnings.warn("DWPose: Onnxruntime not found or doesn't come with acceleration providers, switch to OpenCV with CPU device. DWPose might run very slowly")
|
27 |
+
os.environ['AUX_ORT_PROVIDERS'] = ''
|
28 |
+
os.environ["DWPOSE_ONNXRT_CHECKED"] = '1'
|
29 |
+
|
30 |
+
class DWPose_Preprocessor:
|
31 |
+
@classmethod
|
32 |
+
def INPUT_TYPES(s):
|
33 |
+
return define_preprocessor_inputs(
|
34 |
+
detect_hand=INPUT.COMBO(["enable", "disable"]),
|
35 |
+
detect_body=INPUT.COMBO(["enable", "disable"]),
|
36 |
+
detect_face=INPUT.COMBO(["enable", "disable"]),
|
37 |
+
resolution=INPUT.RESOLUTION(),
|
38 |
+
bbox_detector=INPUT.COMBO(
|
39 |
+
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
|
40 |
+
default="yolox_l.onnx"
|
41 |
+
),
|
42 |
+
pose_estimator=INPUT.COMBO(
|
43 |
+
["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"],
|
44 |
+
default="dw-ll_ucoco_384_bs5.torchscript.pt"
|
45 |
+
)
|
46 |
+
)
|
47 |
+
|
48 |
+
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
|
49 |
+
FUNCTION = "estimate_pose"
|
50 |
+
|
51 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
52 |
+
|
53 |
+
def estimate_pose(self, image, detect_hand="enable", detect_body="enable", detect_face="enable", resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx", **kwargs):
|
54 |
+
if bbox_detector == "yolox_l.onnx":
|
55 |
+
yolo_repo = DWPOSE_MODEL_NAME
|
56 |
+
elif "yolox" in bbox_detector:
|
57 |
+
yolo_repo = "hr16/yolox-onnx"
|
58 |
+
elif "yolo_nas" in bbox_detector:
|
59 |
+
yolo_repo = "hr16/yolo-nas-fp16"
|
60 |
+
else:
|
61 |
+
raise NotImplementedError(f"Download mechanism for {bbox_detector}")
|
62 |
+
|
63 |
+
if pose_estimator == "dw-ll_ucoco_384.onnx":
|
64 |
+
pose_repo = DWPOSE_MODEL_NAME
|
65 |
+
elif pose_estimator.endswith(".onnx"):
|
66 |
+
pose_repo = "hr16/UnJIT-DWPose"
|
67 |
+
elif pose_estimator.endswith(".torchscript.pt"):
|
68 |
+
pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
|
69 |
+
else:
|
70 |
+
raise NotImplementedError(f"Download mechanism for {pose_estimator}")
|
71 |
+
|
72 |
+
model = DwposeDetector.from_pretrained(
|
73 |
+
pose_repo,
|
74 |
+
yolo_repo,
|
75 |
+
det_filename=bbox_detector, pose_filename=pose_estimator,
|
76 |
+
torchscript_device=model_management.get_torch_device()
|
77 |
+
)
|
78 |
+
detect_hand = detect_hand == "enable"
|
79 |
+
detect_body = detect_body == "enable"
|
80 |
+
detect_face = detect_face == "enable"
|
81 |
+
self.openpose_dicts = []
|
82 |
+
def func(image, **kwargs):
|
83 |
+
pose_img, openpose_dict = model(image, **kwargs)
|
84 |
+
self.openpose_dicts.append(openpose_dict)
|
85 |
+
return pose_img
|
86 |
+
|
87 |
+
out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution)
|
88 |
+
del model
|
89 |
+
return {
|
90 |
+
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
|
91 |
+
"result": (out, self.openpose_dicts)
|
92 |
+
}
|
93 |
+
|
94 |
+
class AnimalPose_Preprocessor:
|
95 |
+
@classmethod
|
96 |
+
def INPUT_TYPES(s):
|
97 |
+
return define_preprocessor_inputs(
|
98 |
+
bbox_detector = INPUT.COMBO(
|
99 |
+
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
|
100 |
+
default="yolox_l.torchscript.pt"
|
101 |
+
),
|
102 |
+
pose_estimator = INPUT.COMBO(
|
103 |
+
["rtmpose-m_ap10k_256_bs5.torchscript.pt", "rtmpose-m_ap10k_256.onnx"],
|
104 |
+
default="rtmpose-m_ap10k_256_bs5.torchscript.pt"
|
105 |
+
),
|
106 |
+
resolution = INPUT.RESOLUTION()
|
107 |
+
)
|
108 |
+
|
109 |
+
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
|
110 |
+
FUNCTION = "estimate_pose"
|
111 |
+
|
112 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
113 |
+
|
114 |
+
def estimate_pose(self, image, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="rtmpose-m_ap10k_256.onnx", **kwargs):
|
115 |
+
if bbox_detector == "yolox_l.onnx":
|
116 |
+
yolo_repo = DWPOSE_MODEL_NAME
|
117 |
+
elif "yolox" in bbox_detector:
|
118 |
+
yolo_repo = "hr16/yolox-onnx"
|
119 |
+
elif "yolo_nas" in bbox_detector:
|
120 |
+
yolo_repo = "hr16/yolo-nas-fp16"
|
121 |
+
else:
|
122 |
+
raise NotImplementedError(f"Download mechanism for {bbox_detector}")
|
123 |
+
|
124 |
+
if pose_estimator == "dw-ll_ucoco_384.onnx":
|
125 |
+
pose_repo = DWPOSE_MODEL_NAME
|
126 |
+
elif pose_estimator.endswith(".onnx"):
|
127 |
+
pose_repo = "hr16/UnJIT-DWPose"
|
128 |
+
elif pose_estimator.endswith(".torchscript.pt"):
|
129 |
+
pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
|
130 |
+
else:
|
131 |
+
raise NotImplementedError(f"Download mechanism for {pose_estimator}")
|
132 |
+
|
133 |
+
model = AnimalposeDetector.from_pretrained(
|
134 |
+
pose_repo,
|
135 |
+
yolo_repo,
|
136 |
+
det_filename=bbox_detector, pose_filename=pose_estimator,
|
137 |
+
torchscript_device=model_management.get_torch_device()
|
138 |
+
)
|
139 |
+
|
140 |
+
self.openpose_dicts = []
|
141 |
+
def func(image, **kwargs):
|
142 |
+
pose_img, openpose_dict = model(image, **kwargs)
|
143 |
+
self.openpose_dicts.append(openpose_dict)
|
144 |
+
return pose_img
|
145 |
+
|
146 |
+
out = common_annotator_call(func, image, image_and_json=True, resolution=resolution)
|
147 |
+
del model
|
148 |
+
return {
|
149 |
+
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
|
150 |
+
"result": (out, self.openpose_dicts)
|
151 |
+
}
|
152 |
+
|
153 |
+
NODE_CLASS_MAPPINGS = {
|
154 |
+
"DWPreprocessor": DWPose_Preprocessor,
|
155 |
+
"AnimalPosePreprocessor": AnimalPose_Preprocessor
|
156 |
+
}
|
157 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
158 |
+
"DWPreprocessor": "DWPose Estimator",
|
159 |
+
"AnimalPosePreprocessor": "AnimalPose Estimator (AP10K)"
|
160 |
+
}
|
node_wrappers/hed.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class HED_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
safe=INPUT.COMBO(["enable", "disable"]),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.hed import HEDdetector
|
19 |
+
|
20 |
+
model = HEDdetector.from_pretrained().to(model_management.get_torch_device())
|
21 |
+
out = common_annotator_call(model, image, resolution=resolution, safe = kwargs["safe"] == "enable")
|
22 |
+
del model
|
23 |
+
return (out, )
|
24 |
+
|
25 |
+
class Fake_Scribble_Preprocessor:
|
26 |
+
@classmethod
|
27 |
+
def INPUT_TYPES(s):
|
28 |
+
return define_preprocessor_inputs(
|
29 |
+
safe=INPUT.COMBO(["enable", "disable"]),
|
30 |
+
resolution=INPUT.RESOLUTION()
|
31 |
+
)
|
32 |
+
|
33 |
+
RETURN_TYPES = ("IMAGE",)
|
34 |
+
FUNCTION = "execute"
|
35 |
+
|
36 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
37 |
+
|
38 |
+
def execute(self, image, resolution=512, **kwargs):
|
39 |
+
from custom_controlnet_aux.hed import HEDdetector
|
40 |
+
|
41 |
+
model = HEDdetector.from_pretrained().to(model_management.get_torch_device())
|
42 |
+
out = common_annotator_call(model, image, resolution=resolution, scribble=True, safe=kwargs["safe"]=="enable")
|
43 |
+
del model
|
44 |
+
return (out, )
|
45 |
+
|
46 |
+
NODE_CLASS_MAPPINGS = {
|
47 |
+
"HEDPreprocessor": HED_Preprocessor,
|
48 |
+
"FakeScribblePreprocessor": Fake_Scribble_Preprocessor
|
49 |
+
}
|
50 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
51 |
+
"HEDPreprocessor": "HED Soft-Edge Lines",
|
52 |
+
"FakeScribblePreprocessor": "Fake Scribble Lines (aka scribble_hed)"
|
53 |
+
}
|
node_wrappers/inpaint.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ..utils import INPUT
|
3 |
+
|
4 |
+
class InpaintPreprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return dict(
|
8 |
+
required=dict(image=INPUT.IMAGE(), mask=INPUT.MASK())
|
9 |
+
)
|
10 |
+
RETURN_TYPES = ("IMAGE",)
|
11 |
+
FUNCTION = "preprocess"
|
12 |
+
|
13 |
+
CATEGORY = "ControlNet Preprocessors/others"
|
14 |
+
|
15 |
+
def preprocess(self, image, mask):
|
16 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(image.shape[1], image.shape[2]), mode="bilinear")
|
17 |
+
mask = mask.movedim(1,-1).expand((-1,-1,-1,3))
|
18 |
+
image = image.clone()
|
19 |
+
image[mask > 0.5] = -1.0 # set as masked pixel
|
20 |
+
return (image,)
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"InpaintPreprocessor": InpaintPreprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"InpaintPreprocessor": "Inpaint Preprocessor"
|
27 |
+
}
|
node_wrappers/leres.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class LERES_Depth_Map_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
rm_nearest=INPUT.FLOAT(max=100.0),
|
9 |
+
rm_background=INPUT.FLOAT(max=100.0),
|
10 |
+
boost=INPUT.COMBO(["disable", "enable"]),
|
11 |
+
resolution=INPUT.RESOLUTION()
|
12 |
+
)
|
13 |
+
|
14 |
+
RETURN_TYPES = ("IMAGE",)
|
15 |
+
FUNCTION = "execute"
|
16 |
+
|
17 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
18 |
+
|
19 |
+
def execute(self, image, rm_nearest=0, rm_background=0, resolution=512, boost="disable", **kwargs):
|
20 |
+
from custom_controlnet_aux.leres import LeresDetector
|
21 |
+
|
22 |
+
model = LeresDetector.from_pretrained().to(model_management.get_torch_device())
|
23 |
+
out = common_annotator_call(model, image, resolution=resolution, thr_a=rm_nearest, thr_b=rm_background, boost=boost == "enable")
|
24 |
+
del model
|
25 |
+
return (out, )
|
26 |
+
|
27 |
+
NODE_CLASS_MAPPINGS = {
|
28 |
+
"LeReS-DepthMapPreprocessor": LERES_Depth_Map_Preprocessor
|
29 |
+
}
|
30 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
31 |
+
"LeReS-DepthMapPreprocessor": "LeReS Depth Map (enable boost for leres++)"
|
32 |
+
}
|
node_wrappers/lineart.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class LineArt_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
coarse=INPUT.COMBO((["disable", "enable"])),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.lineart import LineartDetector
|
19 |
+
|
20 |
+
model = LineartDetector.from_pretrained().to(model_management.get_torch_device())
|
21 |
+
out = common_annotator_call(model, image, resolution=resolution, coarse = kwargs["coarse"] == "enable")
|
22 |
+
del model
|
23 |
+
return (out, )
|
24 |
+
|
25 |
+
NODE_CLASS_MAPPINGS = {
|
26 |
+
"LineArtPreprocessor": LineArt_Preprocessor
|
27 |
+
}
|
28 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
29 |
+
"LineArtPreprocessor": "Realistic Lineart"
|
30 |
+
}
|
node_wrappers/lineart_anime.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class AnimeLineArt_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.lineart_anime import LineartAnimeDetector
|
16 |
+
|
17 |
+
model = LineartAnimeDetector.from_pretrained().to(model_management.get_torch_device())
|
18 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
19 |
+
del model
|
20 |
+
return (out, )
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"AnimeLineArtPreprocessor": AnimeLineArt_Preprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"AnimeLineArtPreprocessor": "Anime Lineart"
|
27 |
+
}
|
node_wrappers/lineart_standard.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Lineart_Standard_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
guassian_sigma=INPUT.FLOAT(default=6.0, max=100.0),
|
9 |
+
intensity_threshold=INPUT.INT(default=8, max=16),
|
10 |
+
resolution=INPUT.RESOLUTION()
|
11 |
+
)
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
17 |
+
|
18 |
+
def execute(self, image, guassian_sigma=6, intensity_threshold=8, resolution=512, **kwargs):
|
19 |
+
from custom_controlnet_aux.lineart_standard import LineartStandardDetector
|
20 |
+
return (common_annotator_call(LineartStandardDetector(), image, guassian_sigma=guassian_sigma, intensity_threshold=intensity_threshold, resolution=resolution), )
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"LineartStandardPreprocessor": Lineart_Standard_Preprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"LineartStandardPreprocessor": "Standard Lineart"
|
27 |
+
}
|
node_wrappers/manga_line.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Manga2Anime_LineArt_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.manga_line import LineartMangaDetector
|
16 |
+
|
17 |
+
model = LineartMangaDetector.from_pretrained().to(model_management.get_torch_device())
|
18 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
19 |
+
del model
|
20 |
+
return (out, )
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"Manga2Anime_LineArt_Preprocessor": Manga2Anime_LineArt_Preprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"Manga2Anime_LineArt_Preprocessor": "Manga Lineart (aka lineart_anime_denoise)"
|
27 |
+
}
|
node_wrappers/mediapipe_face.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, run_script
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import os, sys
|
4 |
+
import subprocess, threading
|
5 |
+
|
6 |
+
def install_deps():
|
7 |
+
try:
|
8 |
+
import mediapipe
|
9 |
+
except ImportError:
|
10 |
+
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'mediapipe'])
|
11 |
+
run_script([sys.executable, '-s', '-m', 'pip', 'install', '--upgrade', 'protobuf'])
|
12 |
+
|
13 |
+
class Media_Pipe_Face_Mesh_Preprocessor:
|
14 |
+
@classmethod
|
15 |
+
def INPUT_TYPES(s):
|
16 |
+
return define_preprocessor_inputs(
|
17 |
+
max_faces=INPUT.INT(default=10, min=1, max=50), #Which image has more than 50 detectable faces?
|
18 |
+
min_confidence=INPUT.FLOAT(default=0.5, min=0.1),
|
19 |
+
resolution=INPUT.RESOLUTION()
|
20 |
+
)
|
21 |
+
|
22 |
+
RETURN_TYPES = ("IMAGE",)
|
23 |
+
FUNCTION = "detect"
|
24 |
+
|
25 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
26 |
+
|
27 |
+
def detect(self, image, max_faces=10, min_confidence=0.5, resolution=512):
|
28 |
+
#Ref: https://github.com/Fannovel16/comfy_controlnet_preprocessors/issues/70#issuecomment-1677967369
|
29 |
+
install_deps()
|
30 |
+
from custom_controlnet_aux.mediapipe_face import MediapipeFaceDetector
|
31 |
+
return (common_annotator_call(MediapipeFaceDetector(), image, max_faces=max_faces, min_confidence=min_confidence, resolution=resolution), )
|
32 |
+
|
33 |
+
NODE_CLASS_MAPPINGS = {
|
34 |
+
"MediaPipe-FaceMeshPreprocessor": Media_Pipe_Face_Mesh_Preprocessor
|
35 |
+
}
|
36 |
+
|
37 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
38 |
+
"MediaPipe-FaceMeshPreprocessor": "MediaPipe Face Mesh"
|
39 |
+
}
|
node_wrappers/mesh_graphormer.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, MAX_RESOLUTION, run_script
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
import os, sys
|
7 |
+
import subprocess, threading
|
8 |
+
import scipy.ndimage
|
9 |
+
import cv2
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
def install_deps():
|
13 |
+
try:
|
14 |
+
import mediapipe
|
15 |
+
except ImportError:
|
16 |
+
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'mediapipe'])
|
17 |
+
run_script([sys.executable, '-s', '-m', 'pip', 'install', '--upgrade', 'protobuf'])
|
18 |
+
|
19 |
+
try:
|
20 |
+
import trimesh
|
21 |
+
except ImportError:
|
22 |
+
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'trimesh[easy]'])
|
23 |
+
|
24 |
+
#Sauce: https://github.com/comfyanonymous/ComfyUI/blob/8c6493578b3dda233e9b9a953feeaf1e6ca434ad/comfy_extras/nodes_mask.py#L309
|
25 |
+
def expand_mask(mask, expand, tapered_corners):
|
26 |
+
c = 0 if tapered_corners else 1
|
27 |
+
kernel = np.array([[c, 1, c],
|
28 |
+
[1, 1, 1],
|
29 |
+
[c, 1, c]])
|
30 |
+
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
|
31 |
+
out = []
|
32 |
+
for m in mask:
|
33 |
+
output = m.numpy()
|
34 |
+
for _ in range(abs(expand)):
|
35 |
+
if expand < 0:
|
36 |
+
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
|
37 |
+
else:
|
38 |
+
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
|
39 |
+
output = torch.from_numpy(output)
|
40 |
+
out.append(output)
|
41 |
+
return torch.stack(out, dim=0)
|
42 |
+
|
43 |
+
class Mesh_Graphormer_Depth_Map_Preprocessor:
|
44 |
+
@classmethod
|
45 |
+
def INPUT_TYPES(s):
|
46 |
+
return define_preprocessor_inputs(
|
47 |
+
mask_bbox_padding=("INT", {"default": 30, "min": 0, "max": 100}),
|
48 |
+
resolution=INPUT.RESOLUTION(),
|
49 |
+
mask_type=INPUT.COMBO(["based_on_depth", "tight_bboxes", "original"]),
|
50 |
+
mask_expand=INPUT.INT(default=5, min=-MAX_RESOLUTION, max=MAX_RESOLUTION),
|
51 |
+
rand_seed=INPUT.INT(default=88, min=0, max=0xffffffffffffffff),
|
52 |
+
detect_thr=INPUT.FLOAT(default=0.6, min=0.1),
|
53 |
+
presence_thr=INPUT.FLOAT(default=0.6, min=0.1)
|
54 |
+
)
|
55 |
+
|
56 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
57 |
+
RETURN_NAMES = ("IMAGE", "INPAINTING_MASK")
|
58 |
+
FUNCTION = "execute"
|
59 |
+
|
60 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
61 |
+
|
62 |
+
def execute(self, image, mask_bbox_padding=30, mask_type="based_on_depth", mask_expand=5, resolution=512, rand_seed=88, detect_thr=0.6, presence_thr=0.6, **kwargs):
|
63 |
+
install_deps()
|
64 |
+
from custom_controlnet_aux.mesh_graphormer import MeshGraphormerDetector
|
65 |
+
model = kwargs["model"] if "model" in kwargs \
|
66 |
+
else MeshGraphormerDetector.from_pretrained(detect_thr=detect_thr, presence_thr=presence_thr).to(model_management.get_torch_device())
|
67 |
+
|
68 |
+
depth_map_list = []
|
69 |
+
mask_list = []
|
70 |
+
for single_image in image:
|
71 |
+
np_image = np.asarray(single_image.cpu() * 255., dtype=np.uint8)
|
72 |
+
depth_map, mask, info = model(np_image, output_type="np", detect_resolution=resolution, mask_bbox_padding=mask_bbox_padding, seed=rand_seed)
|
73 |
+
if mask_type == "based_on_depth":
|
74 |
+
H, W = mask.shape[:2]
|
75 |
+
mask = cv2.resize(depth_map.copy(), (W, H))
|
76 |
+
mask[mask > 0] = 255
|
77 |
+
|
78 |
+
elif mask_type == "tight_bboxes":
|
79 |
+
mask = np.zeros_like(mask)
|
80 |
+
hand_bboxes = (info or {}).get("abs_boxes") or []
|
81 |
+
for hand_bbox in hand_bboxes:
|
82 |
+
x_min, x_max, y_min, y_max = hand_bbox
|
83 |
+
mask[y_min:y_max+1, x_min:x_max+1, :] = 255 #HWC
|
84 |
+
|
85 |
+
mask = mask[:, :, :1]
|
86 |
+
depth_map_list.append(torch.from_numpy(depth_map.astype(np.float32) / 255.0))
|
87 |
+
mask_list.append(torch.from_numpy(mask.astype(np.float32) / 255.0))
|
88 |
+
depth_maps, masks = torch.stack(depth_map_list, dim=0), rearrange(torch.stack(mask_list, dim=0), "n h w 1 -> n 1 h w")
|
89 |
+
return depth_maps, expand_mask(masks, mask_expand, tapered_corners=True)
|
90 |
+
|
91 |
+
def normalize_size_base_64(w, h):
|
92 |
+
short_side = min(w, h)
|
93 |
+
remainder = short_side % 64
|
94 |
+
return short_side - remainder + (64 if remainder > 0 else 0)
|
95 |
+
|
96 |
+
class Mesh_Graphormer_With_ImpactDetector_Depth_Map_Preprocessor:
|
97 |
+
@classmethod
|
98 |
+
def INPUT_TYPES(s):
|
99 |
+
types = define_preprocessor_inputs(
|
100 |
+
# Impact pack
|
101 |
+
bbox_threshold=INPUT.FLOAT(default=0.5, min=0.1),
|
102 |
+
bbox_dilation=INPUT.INT(default=10, min=-512, max=512),
|
103 |
+
bbox_crop_factor=INPUT.FLOAT(default=3.0, min=1.0, max=10.0),
|
104 |
+
drop_size=INPUT.INT(default=10, min=1, max=MAX_RESOLUTION),
|
105 |
+
# Mesh Graphormer
|
106 |
+
mask_bbox_padding=INPUT.INT(default=30, min=0, max=100),
|
107 |
+
mask_type=INPUT.COMBO(["based_on_depth", "tight_bboxes", "original"]),
|
108 |
+
mask_expand=INPUT.INT(default=5, min=-MAX_RESOLUTION, max=MAX_RESOLUTION),
|
109 |
+
rand_seed=INPUT.INT(default=88, min=0, max=0xffffffffffffffff),
|
110 |
+
resolution=INPUT.RESOLUTION()
|
111 |
+
)
|
112 |
+
types["required"]["bbox_detector"] = ("BBOX_DETECTOR", )
|
113 |
+
return types
|
114 |
+
|
115 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
116 |
+
RETURN_NAMES = ("IMAGE", "INPAINTING_MASK")
|
117 |
+
FUNCTION = "execute"
|
118 |
+
|
119 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
120 |
+
|
121 |
+
def execute(self, image, bbox_detector, bbox_threshold=0.5, bbox_dilation=10, bbox_crop_factor=3.0, drop_size=10, resolution=512, **mesh_graphormer_kwargs):
|
122 |
+
install_deps()
|
123 |
+
from custom_controlnet_aux.mesh_graphormer import MeshGraphormerDetector
|
124 |
+
mesh_graphormer_node = Mesh_Graphormer_Depth_Map_Preprocessor()
|
125 |
+
model = MeshGraphormerDetector.from_pretrained(detect_thr=0.6, presence_thr=0.6).to(model_management.get_torch_device())
|
126 |
+
mesh_graphormer_kwargs["model"] = model
|
127 |
+
|
128 |
+
frames = image
|
129 |
+
depth_maps, masks = [], []
|
130 |
+
for idx in range(len(frames)):
|
131 |
+
frame = frames[idx:idx+1,...] #Impact Pack's BBOX_DETECTOR only supports single batch image
|
132 |
+
bbox_detector.setAux('face') # make default prompt as 'face' if empty prompt for CLIPSeg
|
133 |
+
_, segs = bbox_detector.detect(frame, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size)
|
134 |
+
bbox_detector.setAux(None)
|
135 |
+
|
136 |
+
n, h, w, _ = frame.shape
|
137 |
+
depth_map, mask = torch.zeros_like(frame), torch.zeros(n, 1, h, w)
|
138 |
+
for i, seg in enumerate(segs):
|
139 |
+
x1, y1, x2, y2 = seg.crop_region
|
140 |
+
cropped_image = frame[:, y1:y2, x1:x2, :] # Never use seg.cropped_image to handle overlapping area
|
141 |
+
mesh_graphormer_kwargs["resolution"] = 0 #Disable resizing
|
142 |
+
sub_depth_map, sub_mask = mesh_graphormer_node.execute(cropped_image, **mesh_graphormer_kwargs)
|
143 |
+
depth_map[:, y1:y2, x1:x2, :] = sub_depth_map
|
144 |
+
mask[:, :, y1:y2, x1:x2] = sub_mask
|
145 |
+
|
146 |
+
depth_maps.append(depth_map)
|
147 |
+
masks.append(mask)
|
148 |
+
|
149 |
+
return (torch.cat(depth_maps), torch.cat(masks))
|
150 |
+
|
151 |
+
NODE_CLASS_MAPPINGS = {
|
152 |
+
"MeshGraphormer-DepthMapPreprocessor": Mesh_Graphormer_Depth_Map_Preprocessor,
|
153 |
+
"MeshGraphormer+ImpactDetector-DepthMapPreprocessor": Mesh_Graphormer_With_ImpactDetector_Depth_Map_Preprocessor
|
154 |
+
}
|
155 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
156 |
+
"MeshGraphormer-DepthMapPreprocessor": "MeshGraphormer Hand Refiner",
|
157 |
+
"MeshGraphormer+ImpactDetector-DepthMapPreprocessor": "MeshGraphormer Hand Refiner With External Detector"
|
158 |
+
}
|
node_wrappers/metric3d.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, MAX_RESOLUTION
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Metric3D_Depth_Map_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
backbone=INPUT.COMBO(["vit-small", "vit-large", "vit-giant2"]),
|
9 |
+
fx=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
|
10 |
+
fy=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
|
11 |
+
resolution=INPUT.RESOLUTION()
|
12 |
+
)
|
13 |
+
|
14 |
+
RETURN_TYPES = ("IMAGE",)
|
15 |
+
FUNCTION = "execute"
|
16 |
+
|
17 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
18 |
+
|
19 |
+
def execute(self, image, backbone="vit-small", fx=1000, fy=1000, resolution=512):
|
20 |
+
from custom_controlnet_aux.metric3d import Metric3DDetector
|
21 |
+
model = Metric3DDetector.from_pretrained(filename=f"metric_depth_{backbone.replace('-', '_')}_800k.pth").to(model_management.get_torch_device())
|
22 |
+
cb = lambda image, **kwargs: model(image, **kwargs)[0]
|
23 |
+
out = common_annotator_call(cb, image, resolution=resolution, fx=fx, fy=fy, depth_and_normal=True)
|
24 |
+
del model
|
25 |
+
return (out, )
|
26 |
+
|
27 |
+
class Metric3D_Normal_Map_Preprocessor:
|
28 |
+
@classmethod
|
29 |
+
def INPUT_TYPES(s):
|
30 |
+
return define_preprocessor_inputs(
|
31 |
+
backbone=INPUT.COMBO(["vit-small", "vit-large", "vit-giant2"]),
|
32 |
+
fx=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
|
33 |
+
fy=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
|
34 |
+
resolution=INPUT.RESOLUTION()
|
35 |
+
)
|
36 |
+
|
37 |
+
RETURN_TYPES = ("IMAGE",)
|
38 |
+
FUNCTION = "execute"
|
39 |
+
|
40 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
41 |
+
|
42 |
+
def execute(self, image, backbone="vit-small", fx=1000, fy=1000, resolution=512):
|
43 |
+
from custom_controlnet_aux.metric3d import Metric3DDetector
|
44 |
+
model = Metric3DDetector.from_pretrained(filename=f"metric_depth_{backbone.replace('-', '_')}_800k.pth").to(model_management.get_torch_device())
|
45 |
+
cb = lambda image, **kwargs: model(image, **kwargs)[1]
|
46 |
+
out = common_annotator_call(cb, image, resolution=resolution, fx=fx, fy=fy, depth_and_normal=True)
|
47 |
+
del model
|
48 |
+
return (out, )
|
49 |
+
|
50 |
+
NODE_CLASS_MAPPINGS = {
|
51 |
+
"Metric3D-DepthMapPreprocessor": Metric3D_Depth_Map_Preprocessor,
|
52 |
+
"Metric3D-NormalMapPreprocessor": Metric3D_Normal_Map_Preprocessor
|
53 |
+
}
|
54 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
55 |
+
"Metric3D-DepthMapPreprocessor": "Metric3D Depth Map",
|
56 |
+
"Metric3D-NormalMapPreprocessor": "Metric3D Normal Map"
|
57 |
+
}
|
node_wrappers/midas.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class MIDAS_Normal_Map_Preprocessor:
|
6 |
+
@classmethod
|
7 |
+
def INPUT_TYPES(s):
|
8 |
+
return define_preprocessor_inputs(
|
9 |
+
a=INPUT.FLOAT(default=np.pi * 2.0, min=0.0, max=np.pi * 5.0),
|
10 |
+
bg_threshold=INPUT.FLOAT(default=0.1),
|
11 |
+
resolution=INPUT.RESOLUTION()
|
12 |
+
)
|
13 |
+
|
14 |
+
RETURN_TYPES = ("IMAGE",)
|
15 |
+
FUNCTION = "execute"
|
16 |
+
|
17 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
18 |
+
|
19 |
+
def execute(self, image, a=np.pi * 2.0, bg_threshold=0.1, resolution=512, **kwargs):
|
20 |
+
from custom_controlnet_aux.midas import MidasDetector
|
21 |
+
|
22 |
+
model = MidasDetector.from_pretrained().to(model_management.get_torch_device())
|
23 |
+
#Dirty hack :))
|
24 |
+
cb = lambda image, **kargs: model(image, **kargs)[1]
|
25 |
+
out = common_annotator_call(cb, image, resolution=resolution, a=a, bg_th=bg_threshold, depth_and_normal=True)
|
26 |
+
del model
|
27 |
+
return (out, )
|
28 |
+
|
29 |
+
class MIDAS_Depth_Map_Preprocessor:
|
30 |
+
@classmethod
|
31 |
+
def INPUT_TYPES(s):
|
32 |
+
return define_preprocessor_inputs(
|
33 |
+
a=INPUT.FLOAT(default=np.pi * 2.0, min=0.0, max=np.pi * 5.0),
|
34 |
+
bg_threshold=INPUT.FLOAT(default=0.1),
|
35 |
+
resolution=INPUT.RESOLUTION()
|
36 |
+
)
|
37 |
+
|
38 |
+
RETURN_TYPES = ("IMAGE",)
|
39 |
+
FUNCTION = "execute"
|
40 |
+
|
41 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
42 |
+
|
43 |
+
def execute(self, image, a=np.pi * 2.0, bg_threshold=0.1, resolution=512, **kwargs):
|
44 |
+
from custom_controlnet_aux.midas import MidasDetector
|
45 |
+
|
46 |
+
# Ref: https://github.com/lllyasviel/ControlNet/blob/main/gradio_depth2image.py
|
47 |
+
model = MidasDetector.from_pretrained().to(model_management.get_torch_device())
|
48 |
+
out = common_annotator_call(model, image, resolution=resolution, a=a, bg_th=bg_threshold)
|
49 |
+
del model
|
50 |
+
return (out, )
|
51 |
+
|
52 |
+
NODE_CLASS_MAPPINGS = {
|
53 |
+
"MiDaS-NormalMapPreprocessor": MIDAS_Normal_Map_Preprocessor,
|
54 |
+
"MiDaS-DepthMapPreprocessor": MIDAS_Depth_Map_Preprocessor
|
55 |
+
}
|
56 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
57 |
+
"MiDaS-NormalMapPreprocessor": "MiDaS Normal Map",
|
58 |
+
"MiDaS-DepthMapPreprocessor": "MiDaS Depth Map"
|
59 |
+
}
|
node_wrappers/mlsd.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class MLSD_Preprocessor:
|
6 |
+
@classmethod
|
7 |
+
def INPUT_TYPES(s):
|
8 |
+
return define_preprocessor_inputs(
|
9 |
+
score_threshold=INPUT.FLOAT(default=0.1, min=0.01, max=2.0),
|
10 |
+
dist_threshold=INPUT.FLOAT(default=0.1, min=0.01, max=20.0),
|
11 |
+
resolution=INPUT.RESOLUTION()
|
12 |
+
)
|
13 |
+
|
14 |
+
RETURN_TYPES = ("IMAGE",)
|
15 |
+
FUNCTION = "execute"
|
16 |
+
|
17 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
18 |
+
|
19 |
+
def execute(self, image, score_threshold, dist_threshold, resolution=512, **kwargs):
|
20 |
+
from custom_controlnet_aux.mlsd import MLSDdetector
|
21 |
+
|
22 |
+
model = MLSDdetector.from_pretrained().to(model_management.get_torch_device())
|
23 |
+
out = common_annotator_call(model, image, resolution=resolution, thr_v=score_threshold, thr_d=dist_threshold)
|
24 |
+
return (out, )
|
25 |
+
|
26 |
+
NODE_CLASS_MAPPINGS = {
|
27 |
+
"M-LSDPreprocessor": MLSD_Preprocessor
|
28 |
+
}
|
29 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
30 |
+
"M-LSDPreprocessor": "M-LSD Lines"
|
31 |
+
}
|
node_wrappers/normalbae.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class BAE_Normal_Map_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.normalbae import NormalBaeDetector
|
16 |
+
|
17 |
+
model = NormalBaeDetector.from_pretrained().to(model_management.get_torch_device())
|
18 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
19 |
+
del model
|
20 |
+
return (out,)
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"BAE-NormalMapPreprocessor": BAE_Normal_Map_Preprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"BAE-NormalMapPreprocessor": "BAE Normal Map"
|
27 |
+
}
|
node_wrappers/oneformer.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class OneFormer_COCO_SemSegPreprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "semantic_segmentate"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
|
13 |
+
|
14 |
+
def semantic_segmentate(self, image, resolution=512):
|
15 |
+
from custom_controlnet_aux.oneformer import OneformerSegmentor
|
16 |
+
|
17 |
+
model = OneformerSegmentor.from_pretrained(filename="150_16_swin_l_oneformer_coco_100ep.pth")
|
18 |
+
model = model.to(model_management.get_torch_device())
|
19 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
20 |
+
del model
|
21 |
+
return (out,)
|
22 |
+
|
23 |
+
class OneFormer_ADE20K_SemSegPreprocessor:
|
24 |
+
@classmethod
|
25 |
+
def INPUT_TYPES(s):
|
26 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
27 |
+
|
28 |
+
RETURN_TYPES = ("IMAGE",)
|
29 |
+
FUNCTION = "semantic_segmentate"
|
30 |
+
|
31 |
+
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
|
32 |
+
|
33 |
+
def semantic_segmentate(self, image, resolution=512):
|
34 |
+
from custom_controlnet_aux.oneformer import OneformerSegmentor
|
35 |
+
|
36 |
+
model = OneformerSegmentor.from_pretrained(filename="250_16_swin_l_oneformer_ade20k_160k.pth")
|
37 |
+
model = model.to(model_management.get_torch_device())
|
38 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
39 |
+
del model
|
40 |
+
return (out,)
|
41 |
+
|
42 |
+
NODE_CLASS_MAPPINGS = {
|
43 |
+
"OneFormer-COCO-SemSegPreprocessor": OneFormer_COCO_SemSegPreprocessor,
|
44 |
+
"OneFormer-ADE20K-SemSegPreprocessor": OneFormer_ADE20K_SemSegPreprocessor
|
45 |
+
}
|
46 |
+
|
47 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
48 |
+
"OneFormer-COCO-SemSegPreprocessor": "OneFormer COCO Segmentor",
|
49 |
+
"OneFormer-ADE20K-SemSegPreprocessor": "OneFormer ADE20K Segmentor"
|
50 |
+
}
|
node_wrappers/openpose.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import json
|
4 |
+
|
5 |
+
class OpenPose_Preprocessor:
|
6 |
+
@classmethod
|
7 |
+
def INPUT_TYPES(s):
|
8 |
+
return define_preprocessor_inputs(
|
9 |
+
detect_hand=INPUT.COMBO(["enable", "disable"]),
|
10 |
+
detect_body=INPUT.COMBO(["enable", "disable"]),
|
11 |
+
detect_face=INPUT.COMBO(["enable", "disable"]),
|
12 |
+
resolution=INPUT.RESOLUTION()
|
13 |
+
)
|
14 |
+
|
15 |
+
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
|
16 |
+
FUNCTION = "estimate_pose"
|
17 |
+
|
18 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
19 |
+
|
20 |
+
def estimate_pose(self, image, detect_hand, detect_body, detect_face, resolution=512, **kwargs):
|
21 |
+
from custom_controlnet_aux.open_pose import OpenposeDetector
|
22 |
+
|
23 |
+
detect_hand = detect_hand == "enable"
|
24 |
+
detect_body = detect_body == "enable"
|
25 |
+
detect_face = detect_face == "enable"
|
26 |
+
|
27 |
+
model = OpenposeDetector.from_pretrained().to(model_management.get_torch_device())
|
28 |
+
self.openpose_dicts = []
|
29 |
+
def func(image, **kwargs):
|
30 |
+
pose_img, openpose_dict = model(image, **kwargs)
|
31 |
+
self.openpose_dicts.append(openpose_dict)
|
32 |
+
return pose_img
|
33 |
+
|
34 |
+
out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution)
|
35 |
+
del model
|
36 |
+
return {
|
37 |
+
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
|
38 |
+
"result": (out, self.openpose_dicts)
|
39 |
+
}
|
40 |
+
|
41 |
+
NODE_CLASS_MAPPINGS = {
|
42 |
+
"OpenposePreprocessor": OpenPose_Preprocessor,
|
43 |
+
}
|
44 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
45 |
+
"OpenposePreprocessor": "OpenPose Pose",
|
46 |
+
}
|
node_wrappers/pidinet.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class PIDINET_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
safe=INPUT.COMBO(["enable", "disable"]),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, safe, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.pidi import PidiNetDetector
|
19 |
+
|
20 |
+
model = PidiNetDetector.from_pretrained().to(model_management.get_torch_device())
|
21 |
+
out = common_annotator_call(model, image, resolution=resolution, safe = safe == "enable")
|
22 |
+
del model
|
23 |
+
return (out, )
|
24 |
+
|
25 |
+
NODE_CLASS_MAPPINGS = {
|
26 |
+
"PiDiNetPreprocessor": PIDINET_Preprocessor,
|
27 |
+
}
|
28 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
29 |
+
"PiDiNetPreprocessor": "PiDiNet Soft-Edge Lines"
|
30 |
+
}
|
node_wrappers/pose_keypoint_postprocess.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import folder_paths
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from PIL import ImageColor
|
7 |
+
from einops import rearrange
|
8 |
+
import torch
|
9 |
+
import itertools
|
10 |
+
|
11 |
+
from ..src.custom_controlnet_aux.dwpose import draw_poses, draw_animalposes, decode_json_as_poses
|
12 |
+
|
13 |
+
|
14 |
+
"""
|
15 |
+
Format of POSE_KEYPOINT (AP10K keypoints):
|
16 |
+
[{
|
17 |
+
"version": "ap10k",
|
18 |
+
"animals": [
|
19 |
+
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
|
20 |
+
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
|
21 |
+
...
|
22 |
+
],
|
23 |
+
"canvas_height": 512,
|
24 |
+
"canvas_width": 768
|
25 |
+
},...]
|
26 |
+
Format of POSE_KEYPOINT (OpenPose keypoints):
|
27 |
+
[{
|
28 |
+
"people": [
|
29 |
+
{
|
30 |
+
'pose_keypoints_2d': [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]]
|
31 |
+
"face_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x68, y68, 1]],
|
32 |
+
"hand_left_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
|
33 |
+
"hand_right_keypoints_2d":[[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]],
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"canvas_height": canvas_height,
|
37 |
+
"canvas_width": canvas_width,
|
38 |
+
},...]
|
39 |
+
"""
|
40 |
+
|
41 |
+
class SavePoseKpsAsJsonFile:
|
42 |
+
@classmethod
|
43 |
+
def INPUT_TYPES(s):
|
44 |
+
return {
|
45 |
+
"required": {
|
46 |
+
"pose_kps": ("POSE_KEYPOINT",),
|
47 |
+
"filename_prefix": ("STRING", {"default": "PoseKeypoint"})
|
48 |
+
}
|
49 |
+
}
|
50 |
+
RETURN_TYPES = ()
|
51 |
+
FUNCTION = "save_pose_kps"
|
52 |
+
OUTPUT_NODE = True
|
53 |
+
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
|
54 |
+
def __init__(self):
|
55 |
+
self.output_dir = folder_paths.get_output_directory()
|
56 |
+
self.type = "output"
|
57 |
+
self.prefix_append = ""
|
58 |
+
def save_pose_kps(self, pose_kps, filename_prefix):
|
59 |
+
filename_prefix += self.prefix_append
|
60 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = \
|
61 |
+
folder_paths.get_save_image_path(filename_prefix, self.output_dir, pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"])
|
62 |
+
file = f"{filename}_{counter:05}.json"
|
63 |
+
with open(os.path.join(full_output_folder, file), 'w') as f:
|
64 |
+
json.dump(pose_kps , f)
|
65 |
+
return {}
|
66 |
+
|
67 |
+
#COCO-Wholebody doesn't have eyebrows as it inherits 68 keypoints format
|
68 |
+
#Perhaps eyebrows can be estimated tho
|
69 |
+
FACIAL_PARTS = ["skin", "left_eye", "right_eye", "nose", "upper_lip", "inner_mouth", "lower_lip"]
|
70 |
+
LAPA_COLORS = dict(
|
71 |
+
skin="rgb(0, 153, 255)",
|
72 |
+
left_eye="rgb(0, 204, 153)",
|
73 |
+
right_eye="rgb(255, 153, 0)",
|
74 |
+
nose="rgb(255, 102, 255)",
|
75 |
+
upper_lip="rgb(102, 0, 51)",
|
76 |
+
inner_mouth="rgb(255, 204, 255)",
|
77 |
+
lower_lip="rgb(255, 0, 102)"
|
78 |
+
)
|
79 |
+
|
80 |
+
#One-based index
|
81 |
+
def kps_idxs(start, end):
|
82 |
+
step = -1 if start > end else 1
|
83 |
+
return list(range(start-1, end+1-1, step))
|
84 |
+
|
85 |
+
#Source: https://www.researchgate.net/profile/Fabrizio-Falchi/publication/338048224/figure/fig1/AS:837860722741255@1576772971540/68-facial-landmarks.jpg
|
86 |
+
FACIAL_PART_RANGES = dict(
|
87 |
+
skin=kps_idxs(1, 17) + kps_idxs(27, 18),
|
88 |
+
nose=kps_idxs(28, 36),
|
89 |
+
left_eye=kps_idxs(37, 42),
|
90 |
+
right_eye=kps_idxs(43, 48),
|
91 |
+
upper_lip=kps_idxs(49, 55) + kps_idxs(65, 61),
|
92 |
+
lower_lip=kps_idxs(61, 68),
|
93 |
+
inner_mouth=kps_idxs(61, 65) + kps_idxs(55, 49)
|
94 |
+
)
|
95 |
+
|
96 |
+
def is_normalized(keypoints) -> bool:
|
97 |
+
point_normalized = [
|
98 |
+
0 <= np.abs(k[0]) <= 1 and 0 <= np.abs(k[1]) <= 1
|
99 |
+
for k in keypoints
|
100 |
+
if k is not None
|
101 |
+
]
|
102 |
+
if not point_normalized:
|
103 |
+
return False
|
104 |
+
return np.all(point_normalized)
|
105 |
+
|
106 |
+
class FacialPartColoringFromPoseKps:
|
107 |
+
@classmethod
|
108 |
+
def INPUT_TYPES(s):
|
109 |
+
input_types = {
|
110 |
+
"required": {"pose_kps": ("POSE_KEYPOINT",), "mode": (["point", "polygon"], {"default": "polygon"})}
|
111 |
+
}
|
112 |
+
for facial_part in FACIAL_PARTS:
|
113 |
+
input_types["required"][facial_part] = ("STRING", {"default": LAPA_COLORS[facial_part], "multiline": False})
|
114 |
+
return input_types
|
115 |
+
RETURN_TYPES = ("IMAGE",)
|
116 |
+
FUNCTION = "colorize"
|
117 |
+
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
|
118 |
+
def colorize(self, pose_kps, mode, **facial_part_colors):
|
119 |
+
pose_frames = pose_kps
|
120 |
+
np_frames = [self.draw_kps(pose_frame, mode, **facial_part_colors) for pose_frame in pose_frames]
|
121 |
+
np_frames = np.stack(np_frames, axis=0)
|
122 |
+
return (torch.from_numpy(np_frames).float() / 255.,)
|
123 |
+
|
124 |
+
def draw_kps(self, pose_frame, mode, **facial_part_colors):
|
125 |
+
width, height = pose_frame["canvas_width"], pose_frame["canvas_height"]
|
126 |
+
canvas = np.zeros((height, width, 3), dtype=np.uint8)
|
127 |
+
for person, part_name in itertools.product(pose_frame["people"], FACIAL_PARTS):
|
128 |
+
n = len(person["face_keypoints_2d"]) // 3
|
129 |
+
facial_kps = rearrange(np.array(person["face_keypoints_2d"]), "(n c) -> n c", n=n, c=3)[:, :2]
|
130 |
+
if is_normalized(facial_kps):
|
131 |
+
facial_kps *= (width, height)
|
132 |
+
facial_kps = facial_kps.astype(np.int32)
|
133 |
+
part_color = ImageColor.getrgb(facial_part_colors[part_name])[:3]
|
134 |
+
part_contours = facial_kps[FACIAL_PART_RANGES[part_name], :]
|
135 |
+
if mode == "point":
|
136 |
+
for pt in part_contours:
|
137 |
+
cv2.circle(canvas, pt, radius=2, color=part_color, thickness=-1)
|
138 |
+
else:
|
139 |
+
cv2.fillPoly(canvas, pts=[part_contours], color=part_color)
|
140 |
+
return canvas
|
141 |
+
|
142 |
+
# https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/.github/media/keypoints_pose_18.png
|
143 |
+
BODY_PART_INDEXES = {
|
144 |
+
"Head": (16, 14, 0, 15, 17),
|
145 |
+
"Neck": (0, 1),
|
146 |
+
"Shoulder": (2, 5),
|
147 |
+
"Torso": (2, 5, 8, 11),
|
148 |
+
"RArm": (2, 3),
|
149 |
+
"RForearm": (3, 4),
|
150 |
+
"LArm": (5, 6),
|
151 |
+
"LForearm": (6, 7),
|
152 |
+
"RThigh": (8, 9),
|
153 |
+
"RLeg": (9, 10),
|
154 |
+
"LThigh": (11, 12),
|
155 |
+
"LLeg": (12, 13)
|
156 |
+
}
|
157 |
+
BODY_PART_DEFAULT_W_H = {
|
158 |
+
"Head": "256, 256",
|
159 |
+
"Neck": "100, 100",
|
160 |
+
"Shoulder": '',
|
161 |
+
"Torso": "350, 450",
|
162 |
+
"RArm": "128, 256",
|
163 |
+
"RForearm": "128, 256",
|
164 |
+
"LArm": "128, 256",
|
165 |
+
"LForearm": "128, 256",
|
166 |
+
"RThigh": "128, 256",
|
167 |
+
"RLeg": "128, 256",
|
168 |
+
"LThigh": "128, 256",
|
169 |
+
"LLeg": "128, 256"
|
170 |
+
}
|
171 |
+
|
172 |
+
class SinglePersonProcess:
|
173 |
+
@classmethod
|
174 |
+
def sort_and_get_max_people(s, pose_kps):
|
175 |
+
for idx in range(len(pose_kps)):
|
176 |
+
pose_kps[idx]["people"] = sorted(pose_kps[idx]["people"], key=lambda person:person["pose_keypoints_2d"][0])
|
177 |
+
return pose_kps, max(len(frame["people"]) for frame in pose_kps)
|
178 |
+
|
179 |
+
def __init__(self, pose_kps, person_idx=0) -> None:
|
180 |
+
self.width, self.height = pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"]
|
181 |
+
self.poses = [
|
182 |
+
self.normalize(pose_frame["people"][person_idx]["pose_keypoints_2d"])
|
183 |
+
if person_idx < len(pose_frame["people"])
|
184 |
+
else None
|
185 |
+
for pose_frame in pose_kps
|
186 |
+
]
|
187 |
+
|
188 |
+
def normalize(self, pose_kps_2d):
|
189 |
+
n = len(pose_kps_2d) // 3
|
190 |
+
pose_kps_2d = rearrange(np.array(pose_kps_2d), "(n c) -> n c", n=n, c=3)
|
191 |
+
pose_kps_2d[np.argwhere(pose_kps_2d[:,2]==0), :] = np.iinfo(np.int32).max // 2 #Safe large value
|
192 |
+
pose_kps_2d = pose_kps_2d[:, :2]
|
193 |
+
if is_normalized(pose_kps_2d):
|
194 |
+
pose_kps_2d *= (self.width, self.height)
|
195 |
+
return pose_kps_2d
|
196 |
+
|
197 |
+
def get_xyxy_bboxes(self, part_name, bbox_size=(128, 256)):
|
198 |
+
width, height = bbox_size
|
199 |
+
xyxy_bboxes = {}
|
200 |
+
for idx, pose in enumerate(self.poses):
|
201 |
+
if pose is None:
|
202 |
+
xyxy_bboxes[idx] = (np.iinfo(np.int32).max // 2,) * 4
|
203 |
+
continue
|
204 |
+
pts = pose[BODY_PART_INDEXES[part_name], :]
|
205 |
+
|
206 |
+
#top_left = np.min(pts[:,0]), np.min(pts[:,1])
|
207 |
+
#bottom_right = np.max(pts[:,0]), np.max(pts[:,1])
|
208 |
+
#pad_width = np.maximum(width - (bottom_right[0]-top_left[0]), 0) / 2
|
209 |
+
#pad_height = np.maximum(height - (bottom_right[1]-top_left[1]), 0) / 2
|
210 |
+
#xyxy_bboxes.append((
|
211 |
+
# top_left[0] - pad_width, top_left[1] - pad_height,
|
212 |
+
# bottom_right[0] + pad_width, bottom_right[1] + pad_height,
|
213 |
+
#))
|
214 |
+
|
215 |
+
x_mid, y_mid = np.mean(pts[:, 0]), np.mean(pts[:, 1])
|
216 |
+
xyxy_bboxes[idx] = (
|
217 |
+
x_mid - width/2, y_mid - height/2,
|
218 |
+
x_mid + width/2, y_mid + height/2
|
219 |
+
)
|
220 |
+
return xyxy_bboxes
|
221 |
+
|
222 |
+
class UpperBodyTrackingFromPoseKps:
|
223 |
+
PART_NAMES = ["Head", "Neck", "Shoulder", "Torso", "RArm", "RForearm", "LArm", "LForearm"]
|
224 |
+
|
225 |
+
@classmethod
|
226 |
+
def INPUT_TYPES(s):
|
227 |
+
return {
|
228 |
+
"required": {
|
229 |
+
"pose_kps": ("POSE_KEYPOINT",),
|
230 |
+
"id_include": ("STRING", {"default": '', "multiline": False}),
|
231 |
+
**{part_name + "_width_height": ("STRING", {"default": BODY_PART_DEFAULT_W_H[part_name], "multiline": False}) for part_name in s.PART_NAMES}
|
232 |
+
}
|
233 |
+
}
|
234 |
+
|
235 |
+
RETURN_TYPES = ("TRACKING", "STRING")
|
236 |
+
RETURN_NAMES = ("tracking", "prompt")
|
237 |
+
FUNCTION = "convert"
|
238 |
+
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
|
239 |
+
|
240 |
+
def convert(self, pose_kps, id_include, **parts_width_height):
|
241 |
+
parts_width_height = {part_name.replace("_width_height", ''): value for part_name, value in parts_width_height.items()}
|
242 |
+
enabled_part_names = [part_name for part_name in self.PART_NAMES if len(parts_width_height[part_name].strip())]
|
243 |
+
tracked = {part_name: {} for part_name in enabled_part_names}
|
244 |
+
id_include = id_include.strip()
|
245 |
+
id_include = list(map(int, id_include.split(','))) if len(id_include) else []
|
246 |
+
prompt_string = ''
|
247 |
+
pose_kps, max_people = SinglePersonProcess.sort_and_get_max_people(pose_kps)
|
248 |
+
|
249 |
+
for person_idx in range(max_people):
|
250 |
+
if len(id_include) and person_idx not in id_include:
|
251 |
+
continue
|
252 |
+
processor = SinglePersonProcess(pose_kps, person_idx)
|
253 |
+
for part_name in enabled_part_names:
|
254 |
+
bbox_size = tuple(map(int, parts_width_height[part_name].split(',')))
|
255 |
+
part_bboxes = processor.get_xyxy_bboxes(part_name, bbox_size)
|
256 |
+
id_coordinates = {idx: part_bbox+(processor.width, processor.height) for idx, part_bbox in part_bboxes.items()}
|
257 |
+
tracked[part_name][person_idx] = id_coordinates
|
258 |
+
|
259 |
+
for class_name, class_data in tracked.items():
|
260 |
+
for class_id in class_data.keys():
|
261 |
+
class_id_str = str(class_id)
|
262 |
+
# Use the incoming prompt for each class name and ID
|
263 |
+
_class_name = class_name.replace('L', '').replace('R', '').lower()
|
264 |
+
prompt_string += f'"{class_id_str}.{class_name}": "({_class_name})",\n'
|
265 |
+
|
266 |
+
return (tracked, prompt_string)
|
267 |
+
|
268 |
+
|
269 |
+
def numpy2torch(np_image: np.ndarray) -> torch.Tensor:
|
270 |
+
""" [H, W, C] => [B=1, H, W, C]"""
|
271 |
+
return torch.from_numpy(np_image.astype(np.float32) / 255).unsqueeze(0)
|
272 |
+
|
273 |
+
|
274 |
+
class RenderPeopleKps:
|
275 |
+
@classmethod
|
276 |
+
def INPUT_TYPES(s):
|
277 |
+
return {
|
278 |
+
"required": {
|
279 |
+
"kps": ("POSE_KEYPOINT",),
|
280 |
+
"render_body": ("BOOLEAN", {"default": True}),
|
281 |
+
"render_hand": ("BOOLEAN", {"default": True}),
|
282 |
+
"render_face": ("BOOLEAN", {"default": True}),
|
283 |
+
}
|
284 |
+
}
|
285 |
+
|
286 |
+
RETURN_TYPES = ("IMAGE",)
|
287 |
+
FUNCTION = "render"
|
288 |
+
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
|
289 |
+
|
290 |
+
def render(self, kps, render_body, render_hand, render_face) -> tuple[np.ndarray]:
|
291 |
+
if isinstance(kps, list):
|
292 |
+
kps = kps[0]
|
293 |
+
|
294 |
+
poses, _, height, width = decode_json_as_poses(kps)
|
295 |
+
np_image = draw_poses(
|
296 |
+
poses,
|
297 |
+
height,
|
298 |
+
width,
|
299 |
+
render_body,
|
300 |
+
render_hand,
|
301 |
+
render_face,
|
302 |
+
)
|
303 |
+
return (numpy2torch(np_image),)
|
304 |
+
|
305 |
+
class RenderAnimalKps:
|
306 |
+
@classmethod
|
307 |
+
def INPUT_TYPES(s):
|
308 |
+
return {
|
309 |
+
"required": {
|
310 |
+
"kps": ("POSE_KEYPOINT",),
|
311 |
+
}
|
312 |
+
}
|
313 |
+
|
314 |
+
RETURN_TYPES = ("IMAGE",)
|
315 |
+
FUNCTION = "render"
|
316 |
+
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess"
|
317 |
+
|
318 |
+
def render(self, kps) -> tuple[np.ndarray]:
|
319 |
+
if isinstance(kps, list):
|
320 |
+
kps = kps[0]
|
321 |
+
|
322 |
+
_, poses, height, width = decode_json_as_poses(kps)
|
323 |
+
np_image = draw_animalposes(poses, height, width)
|
324 |
+
return (numpy2torch(np_image),)
|
325 |
+
|
326 |
+
|
327 |
+
NODE_CLASS_MAPPINGS = {
|
328 |
+
"SavePoseKpsAsJsonFile": SavePoseKpsAsJsonFile,
|
329 |
+
"FacialPartColoringFromPoseKps": FacialPartColoringFromPoseKps,
|
330 |
+
"UpperBodyTrackingFromPoseKps": UpperBodyTrackingFromPoseKps,
|
331 |
+
"RenderPeopleKps": RenderPeopleKps,
|
332 |
+
"RenderAnimalKps": RenderAnimalKps,
|
333 |
+
}
|
334 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
335 |
+
"SavePoseKpsAsJsonFile": "Save Pose Keypoints",
|
336 |
+
"FacialPartColoringFromPoseKps": "Colorize Facial Parts from PoseKPS",
|
337 |
+
"UpperBodyTrackingFromPoseKps": "Upper Body Tracking From PoseKps (InstanceDiffusion)",
|
338 |
+
"RenderPeopleKps": "Render Pose JSON (Human)",
|
339 |
+
"RenderAnimalKps": "Render Pose JSON (Animal)",
|
340 |
+
}
|
node_wrappers/recolor.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
|
3 |
+
class ImageLuminanceDetector:
|
4 |
+
@classmethod
|
5 |
+
def INPUT_TYPES(s):
|
6 |
+
#https://github.com/Mikubill/sd-webui-controlnet/blob/416c345072c9c2066101e225964e3986abe6945e/scripts/processor.py#L1229
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
gamma_correction=INPUT.FLOAT(default=1.0, min=0.1, max=2.0),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Recolor"
|
16 |
+
|
17 |
+
def execute(self, image, gamma_correction=1.0, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.recolor import Recolorizer
|
19 |
+
return (common_annotator_call(Recolorizer(), image, mode="luminance", gamma_correction=gamma_correction , resolution=resolution), )
|
20 |
+
|
21 |
+
class ImageIntensityDetector:
|
22 |
+
@classmethod
|
23 |
+
def INPUT_TYPES(s):
|
24 |
+
#https://github.com/Mikubill/sd-webui-controlnet/blob/416c345072c9c2066101e225964e3986abe6945e/scripts/processor.py#L1229
|
25 |
+
return define_preprocessor_inputs(
|
26 |
+
gamma_correction=INPUT.FLOAT(default=1.0, min=0.1, max=2.0),
|
27 |
+
resolution=INPUT.RESOLUTION()
|
28 |
+
)
|
29 |
+
|
30 |
+
RETURN_TYPES = ("IMAGE",)
|
31 |
+
FUNCTION = "execute"
|
32 |
+
|
33 |
+
CATEGORY = "ControlNet Preprocessors/Recolor"
|
34 |
+
|
35 |
+
def execute(self, image, gamma_correction=1.0, resolution=512, **kwargs):
|
36 |
+
from custom_controlnet_aux.recolor import Recolorizer
|
37 |
+
return (common_annotator_call(Recolorizer(), image, mode="intensity", gamma_correction=gamma_correction , resolution=resolution), )
|
38 |
+
|
39 |
+
NODE_CLASS_MAPPINGS = {
|
40 |
+
"ImageLuminanceDetector": ImageLuminanceDetector,
|
41 |
+
"ImageIntensityDetector": ImageIntensityDetector
|
42 |
+
}
|
43 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
44 |
+
"ImageLuminanceDetector": "Image Luminance",
|
45 |
+
"ImageIntensityDetector": "Image Intensity"
|
46 |
+
}
|
node_wrappers/scribble.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, nms
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
class Scribble_Preprocessor:
|
6 |
+
@classmethod
|
7 |
+
def INPUT_TYPES(s):
|
8 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
9 |
+
|
10 |
+
RETURN_TYPES = ("IMAGE",)
|
11 |
+
FUNCTION = "execute"
|
12 |
+
|
13 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
14 |
+
|
15 |
+
def execute(self, image, resolution=512, **kwargs):
|
16 |
+
from custom_controlnet_aux.scribble import ScribbleDetector
|
17 |
+
|
18 |
+
model = ScribbleDetector()
|
19 |
+
return (common_annotator_call(model, image, resolution=resolution), )
|
20 |
+
|
21 |
+
class Scribble_XDoG_Preprocessor:
|
22 |
+
@classmethod
|
23 |
+
def INPUT_TYPES(s):
|
24 |
+
return define_preprocessor_inputs(
|
25 |
+
threshold=INPUT.INT(default=32, min=1, max=64),
|
26 |
+
resolution=INPUT.RESOLUTION()
|
27 |
+
)
|
28 |
+
|
29 |
+
RETURN_TYPES = ("IMAGE",)
|
30 |
+
FUNCTION = "execute"
|
31 |
+
|
32 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
33 |
+
|
34 |
+
def execute(self, image, threshold=32, resolution=512, **kwargs):
|
35 |
+
from custom_controlnet_aux.scribble import ScribbleXDog_Detector
|
36 |
+
|
37 |
+
model = ScribbleXDog_Detector()
|
38 |
+
return (common_annotator_call(model, image, resolution=resolution, thr_a=threshold), )
|
39 |
+
|
40 |
+
class Scribble_PiDiNet_Preprocessor:
|
41 |
+
@classmethod
|
42 |
+
def INPUT_TYPES(s):
|
43 |
+
return define_preprocessor_inputs(
|
44 |
+
safe=(["enable", "disable"]),
|
45 |
+
resolution=INPUT.RESOLUTION()
|
46 |
+
)
|
47 |
+
|
48 |
+
RETURN_TYPES = ("IMAGE",)
|
49 |
+
FUNCTION = "execute"
|
50 |
+
|
51 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
52 |
+
|
53 |
+
def execute(self, image, safe="enable", resolution=512):
|
54 |
+
def model(img, **kwargs):
|
55 |
+
from custom_controlnet_aux.pidi import PidiNetDetector
|
56 |
+
pidinet = PidiNetDetector.from_pretrained().to(model_management.get_torch_device())
|
57 |
+
result = pidinet(img, scribble=True, **kwargs)
|
58 |
+
result = nms(result, 127, 3.0)
|
59 |
+
result = cv2.GaussianBlur(result, (0, 0), 3.0)
|
60 |
+
result[result > 4] = 255
|
61 |
+
result[result < 255] = 0
|
62 |
+
return result
|
63 |
+
return (common_annotator_call(model, image, resolution=resolution, safe=safe=="enable"),)
|
64 |
+
|
65 |
+
NODE_CLASS_MAPPINGS = {
|
66 |
+
"ScribblePreprocessor": Scribble_Preprocessor,
|
67 |
+
"Scribble_XDoG_Preprocessor": Scribble_XDoG_Preprocessor,
|
68 |
+
"Scribble_PiDiNet_Preprocessor": Scribble_PiDiNet_Preprocessor
|
69 |
+
}
|
70 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
71 |
+
"ScribblePreprocessor": "Scribble Lines",
|
72 |
+
"Scribble_XDoG_Preprocessor": "Scribble XDoG Lines",
|
73 |
+
"Scribble_PiDiNet_Preprocessor": "Scribble PiDiNet Lines"
|
74 |
+
}
|
node_wrappers/segment_anything.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class SAM_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/others"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.sam import SamDetector
|
16 |
+
|
17 |
+
mobile_sam = SamDetector.from_pretrained().to(model_management.get_torch_device())
|
18 |
+
out = common_annotator_call(mobile_sam, image, resolution=resolution)
|
19 |
+
del mobile_sam
|
20 |
+
return (out, )
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"SAMPreprocessor": SAM_Preprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"SAMPreprocessor": "SAM Segmentor"
|
27 |
+
}
|
node_wrappers/shuffle.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, MAX_RESOLUTION
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Shuffle_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
resolution=INPUT.RESOLUTION(),
|
9 |
+
seed=INPUT.SEED()
|
10 |
+
)
|
11 |
+
RETURN_TYPES = ("IMAGE",)
|
12 |
+
FUNCTION = "preprocess"
|
13 |
+
|
14 |
+
CATEGORY = "ControlNet Preprocessors/T2IAdapter-only"
|
15 |
+
|
16 |
+
def preprocess(self, image, resolution=512, seed=0):
|
17 |
+
from custom_controlnet_aux.shuffle import ContentShuffleDetector
|
18 |
+
|
19 |
+
return (common_annotator_call(ContentShuffleDetector(), image, resolution=resolution, seed=seed), )
|
20 |
+
|
21 |
+
NODE_CLASS_MAPPINGS = {
|
22 |
+
"ShufflePreprocessor": Shuffle_Preprocessor
|
23 |
+
}
|
24 |
+
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"ShufflePreprocessor": "Content Shuffle"
|
27 |
+
}
|
node_wrappers/teed.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class TEED_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
safe_steps=INPUT.INT(default=2, max=10),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, safe_steps=2, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.teed import TEDDetector
|
19 |
+
|
20 |
+
model = TEDDetector.from_pretrained().to(model_management.get_torch_device())
|
21 |
+
out = common_annotator_call(model, image, resolution=resolution, safe_steps=safe_steps)
|
22 |
+
del model
|
23 |
+
return (out, )
|
24 |
+
|
25 |
+
NODE_CLASS_MAPPINGS = {
|
26 |
+
"TEEDPreprocessor": TEED_Preprocessor,
|
27 |
+
}
|
28 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
29 |
+
"TEED_Preprocessor": "TEED Soft-Edge Lines",
|
30 |
+
}
|
node_wrappers/tile.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
|
3 |
+
|
4 |
+
class Tile_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
pyrUp_iters=INPUT.INT(default=3, min=1, max=10),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/tile"
|
17 |
+
|
18 |
+
def execute(self, image, pyrUp_iters, resolution=512, **kwargs):
|
19 |
+
from custom_controlnet_aux.tile import TileDetector
|
20 |
+
|
21 |
+
return (common_annotator_call(TileDetector(), image, pyrUp_iters=pyrUp_iters, resolution=resolution),)
|
22 |
+
|
23 |
+
class TTPlanet_TileGF_Preprocessor:
|
24 |
+
@classmethod
|
25 |
+
def INPUT_TYPES(s):
|
26 |
+
return define_preprocessor_inputs(
|
27 |
+
scale_factor=INPUT.FLOAT(default=1.00, min=1.000, max=8.00),
|
28 |
+
blur_strength=INPUT.FLOAT(default=2.0, min=1.0, max=10.0),
|
29 |
+
radius=INPUT.INT(default=7, min=1, max=20),
|
30 |
+
eps=INPUT.FLOAT(default=0.01, min=0.001, max=0.1, step=0.001),
|
31 |
+
resolution=INPUT.RESOLUTION()
|
32 |
+
)
|
33 |
+
|
34 |
+
RETURN_TYPES = ("IMAGE",)
|
35 |
+
FUNCTION = "execute"
|
36 |
+
|
37 |
+
CATEGORY = "ControlNet Preprocessors/tile"
|
38 |
+
|
39 |
+
def execute(self, image, scale_factor, blur_strength, radius, eps, **kwargs):
|
40 |
+
from custom_controlnet_aux.tile import TTPlanet_Tile_Detector_GF
|
41 |
+
|
42 |
+
return (common_annotator_call(TTPlanet_Tile_Detector_GF(), image, scale_factor=scale_factor, blur_strength=blur_strength, radius=radius, eps=eps),)
|
43 |
+
|
44 |
+
class TTPlanet_TileSimple_Preprocessor:
|
45 |
+
@classmethod
|
46 |
+
def INPUT_TYPES(s):
|
47 |
+
return define_preprocessor_inputs(
|
48 |
+
scale_factor=INPUT.FLOAT(default=1.00, min=1.000, max=8.00),
|
49 |
+
blur_strength=INPUT.FLOAT(default=2.0, min=1.0, max=10.0),
|
50 |
+
)
|
51 |
+
|
52 |
+
RETURN_TYPES = ("IMAGE",)
|
53 |
+
FUNCTION = "execute"
|
54 |
+
|
55 |
+
CATEGORY = "ControlNet Preprocessors/tile"
|
56 |
+
|
57 |
+
def execute(self, image, scale_factor, blur_strength):
|
58 |
+
from custom_controlnet_aux.tile import TTPLanet_Tile_Detector_Simple
|
59 |
+
|
60 |
+
return (common_annotator_call(TTPLanet_Tile_Detector_Simple(), image, scale_factor=scale_factor, blur_strength=blur_strength),)
|
61 |
+
|
62 |
+
|
63 |
+
NODE_CLASS_MAPPINGS = {
|
64 |
+
"TilePreprocessor": Tile_Preprocessor,
|
65 |
+
"TTPlanet_TileGF_Preprocessor": TTPlanet_TileGF_Preprocessor,
|
66 |
+
"TTPlanet_TileSimple_Preprocessor": TTPlanet_TileSimple_Preprocessor
|
67 |
+
}
|
68 |
+
|
69 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
70 |
+
"TilePreprocessor": "Tile",
|
71 |
+
"TTPlanet_TileGF_Preprocessor": "TTPlanet Tile GuidedFilter",
|
72 |
+
"TTPlanet_TileSimple_Preprocessor": "TTPlanet Tile Simple"
|
73 |
+
}
|
node_wrappers/uniformer.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Uniformer_SemSegPreprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "semantic_segmentate"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
|
13 |
+
|
14 |
+
def semantic_segmentate(self, image, resolution=512):
|
15 |
+
from custom_controlnet_aux.uniformer import UniformerSegmentor
|
16 |
+
|
17 |
+
model = UniformerSegmentor.from_pretrained().to(model_management.get_torch_device())
|
18 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
19 |
+
del model
|
20 |
+
return (out, )
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"UniFormer-SemSegPreprocessor": Uniformer_SemSegPreprocessor,
|
24 |
+
"SemSegPreprocessor": Uniformer_SemSegPreprocessor,
|
25 |
+
}
|
26 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
27 |
+
"UniFormer-SemSegPreprocessor": "UniFormer Segmentor",
|
28 |
+
"SemSegPreprocessor": "Semantic Segmentor (legacy, alias for UniFormer)",
|
29 |
+
}
|
node_wrappers/unimatch.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from einops import rearrange
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
class Unimatch_OptFlowPreprocessor:
|
9 |
+
@classmethod
|
10 |
+
def INPUT_TYPES(s):
|
11 |
+
return {
|
12 |
+
"required": dict(
|
13 |
+
image=("IMAGE",),
|
14 |
+
ckpt_name=(
|
15 |
+
["gmflow-scale1-mixdata.pth", "gmflow-scale2-mixdata.pth", "gmflow-scale2-regrefine6-mixdata.pth"],
|
16 |
+
{"default": "gmflow-scale2-regrefine6-mixdata.pth"}
|
17 |
+
),
|
18 |
+
backward_flow=("BOOLEAN", {"default": False}),
|
19 |
+
bidirectional_flow=("BOOLEAN", {"default": False})
|
20 |
+
)
|
21 |
+
}
|
22 |
+
|
23 |
+
RETURN_TYPES = ("OPTICAL_FLOW", "IMAGE")
|
24 |
+
RETURN_NAMES = ("OPTICAL_FLOW", "PREVIEW_IMAGE")
|
25 |
+
FUNCTION = "estimate"
|
26 |
+
|
27 |
+
CATEGORY = "ControlNet Preprocessors/Optical Flow"
|
28 |
+
|
29 |
+
def estimate(self, image, ckpt_name, backward_flow=False, bidirectional_flow=False):
|
30 |
+
assert len(image) > 1, "[Unimatch] Requiring as least two frames as an optical flow estimator. Only use this node on video input."
|
31 |
+
from custom_controlnet_aux.unimatch import UnimatchDetector
|
32 |
+
tensor_images = image
|
33 |
+
model = UnimatchDetector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
|
34 |
+
flows, vis_flows = [], []
|
35 |
+
for i in range(len(tensor_images) - 1):
|
36 |
+
image0, image1 = np.asarray(image[i:i+2].cpu() * 255., dtype=np.uint8)
|
37 |
+
flow, vis_flow = model(image0, image1, output_type="np", pred_bwd_flow=backward_flow, pred_bidir_flow=bidirectional_flow)
|
38 |
+
flows.append(torch.from_numpy(flow).float())
|
39 |
+
vis_flows.append(torch.from_numpy(vis_flow).float() / 255.)
|
40 |
+
del model
|
41 |
+
return (torch.stack(flows, dim=0), torch.stack(vis_flows, dim=0))
|
42 |
+
|
43 |
+
class MaskOptFlow:
|
44 |
+
@classmethod
|
45 |
+
def INPUT_TYPES(s):
|
46 |
+
return {
|
47 |
+
"required": dict(optical_flow=("OPTICAL_FLOW",), mask=("MASK",))
|
48 |
+
}
|
49 |
+
|
50 |
+
RETURN_TYPES = ("OPTICAL_FLOW", "IMAGE")
|
51 |
+
RETURN_NAMES = ("OPTICAL_FLOW", "PREVIEW_IMAGE")
|
52 |
+
FUNCTION = "mask_opt_flow"
|
53 |
+
|
54 |
+
CATEGORY = "ControlNet Preprocessors/Optical Flow"
|
55 |
+
|
56 |
+
def mask_opt_flow(self, optical_flow, mask):
|
57 |
+
from custom_controlnet_aux.unimatch import flow_to_image
|
58 |
+
assert len(mask) >= len(optical_flow), f"Not enough masks to mask optical flow: {len(mask)} vs {len(optical_flow)}"
|
59 |
+
mask = mask[:optical_flow.shape[0]]
|
60 |
+
mask = F.interpolate(mask, optical_flow.shape[1:3])
|
61 |
+
mask = rearrange(mask, "n 1 h w -> n h w 1")
|
62 |
+
vis_flows = torch.stack([torch.from_numpy(flow_to_image(flow)).float() / 255. for flow in optical_flow.numpy()], dim=0)
|
63 |
+
vis_flows *= mask
|
64 |
+
optical_flow *= mask
|
65 |
+
return (optical_flow, vis_flows)
|
66 |
+
|
67 |
+
|
68 |
+
NODE_CLASS_MAPPINGS = {
|
69 |
+
"Unimatch_OptFlowPreprocessor": Unimatch_OptFlowPreprocessor,
|
70 |
+
"MaskOptFlow": MaskOptFlow
|
71 |
+
}
|
72 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
73 |
+
"Unimatch_OptFlowPreprocessor": "Unimatch Optical Flow",
|
74 |
+
"MaskOptFlow": "Mask Optical Flow (DragNUWA)"
|
75 |
+
}
|
node_wrappers/zoe.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Zoe_Depth_Map_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.zoe import ZoeDetector
|
16 |
+
|
17 |
+
model = ZoeDetector.from_pretrained().to(model_management.get_torch_device())
|
18 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
19 |
+
del model
|
20 |
+
return (out, )
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"Zoe-DepthMapPreprocessor": Zoe_Depth_Map_Preprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"Zoe-DepthMapPreprocessor": "Zoe Depth Map"
|
27 |
+
}
|
pyproject.toml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "comfyui_controlnet_aux"
|
3 |
+
description = "Plug-and-play ComfyUI node sets for making ControlNet hint images"
|
4 |
+
version = "1.0.4-alpha.4"
|
5 |
+
license = "LICENSE"
|
6 |
+
dependencies = ["torch", "importlib_metadata", "huggingface_hub", "scipy", "opencv-python>=4.7.0.72", "filelock", "numpy", "Pillow", "einops", "torchvision", "pyyaml", "scikit-image", "python-dateutil", "mediapipe", "svglib", "fvcore", "yapf", "omegaconf", "ftfy", "addict", "yacs", "trimesh[easy]", "albumentations", "scikit-learn"]
|
7 |
+
|
8 |
+
[project.urls]
|
9 |
+
Repository = "https://github.com/Fannovel16/comfyui_controlnet_aux"
|
10 |
+
|
11 |
+
[tool.comfy]
|
12 |
+
PublisherId = "fannovel16"
|
13 |
+
DisplayName = "comfyui_controlnet_aux"
|
14 |
+
Icon = ""
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
importlib_metadata
|
3 |
+
huggingface_hub
|
4 |
+
scipy
|
5 |
+
opencv-python>=4.7.0.72
|
6 |
+
filelock
|
7 |
+
numpy
|
8 |
+
Pillow
|
9 |
+
einops
|
10 |
+
torchvision
|
11 |
+
pyyaml
|
12 |
+
scikit-image
|
13 |
+
python-dateutil
|
14 |
+
mediapipe
|
15 |
+
svglib
|
16 |
+
fvcore
|
17 |
+
yapf
|
18 |
+
omegaconf
|
19 |
+
ftfy
|
20 |
+
addict
|
21 |
+
yacs
|
22 |
+
trimesh[easy]
|
23 |
+
albumentations
|
24 |
+
scikit-learn
|