import os import sys import numpy as np import json import math from sklearn.preprocessing import LabelBinarizer, LabelEncoder import torch from transformers import RobertaTokenizer, BertTokenizer from torch.utils.data import Dataset sys.path.append('/home/zekun/spatial_bert/spatial_bert/datasets') from dataset_loader import SpatialDataset import pdb class USGS_MapDataset(SpatialDataset): def __init__(self, data_file_path, tokenizer=None, max_token_len = 512, distance_norm_factor = 1, spatial_dist_fill=100, sep_between_neighbors = False): if tokenizer is None: self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') else: self.tokenizer = tokenizer self.max_token_len = max_token_len self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance self.sep_between_neighbors = sep_between_neighbors self.read_file(data_file_path) super(USGS_MapDataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors ) def read_file(self, data_file_path): with open(data_file_path, 'r') as f: data = f.readlines() len_data = len(data) self.len_data = len_data self.data = data def load_data(self, index): spatial_dist_fill = self.spatial_dist_fill line = self.data[index] # take one line from the input data according to the index line_data_dict = json.loads(line) # process pivot pivot_name = line_data_dict['info']['name'] pivot_pos = line_data_dict['info']['geometry'] neighbor_info = line_data_dict['neighbor_info'] neighbor_name_list = neighbor_info['name_list'] neighbor_geometry_list = neighbor_info['geometry_list'] parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill ) return parsed_data def __len__(self): return self.len_data def __getitem__(self, index): return self.load_data(index)