import sys import numpy as np import json import math import torch from transformers import RobertaTokenizer, BertTokenizer from torch.utils.data import Dataset sys.path.append('/home/zekun/spatial_bert/spatial_bert/datasets') from dataset_loader import SpatialDataset import pdb '''Prepare candiate list given randomly sampled data and append to data_list''' class Wikidata_Random_Dataset(SpatialDataset): def __init__(self, data_file_path, tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=100, sep_between_neighbors = False): if tokenizer is None: self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') else: self.tokenizer = tokenizer self.max_token_len = max_token_len self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance self.sep_between_neighbors = sep_between_neighbors self.read_file(data_file_path) super(Wikidata_Random_Dataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors ) def read_file(self, data_file_path): with open(data_file_path, 'r') as f: data = f.readlines() len_data = len(data) self.len_data = len_data self.data = data def load_data(self, index): spatial_dist_fill = self.spatial_dist_fill line = self.data[index] # take one line from the input data according to the index line_data_dict = json.loads(line) # process pivot pivot_name = line_data_dict['info']['name'] pivot_pos = line_data_dict['info']['geometry']['coordinates'] pivot_uri = line_data_dict['info']['uri'] neighbor_info = line_data_dict['neighbor_info'] neighbor_name_list = neighbor_info['name_list'] neighbor_geometry_list = neighbor_info['geometry_list'] parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill ) parsed_data['uri'] = pivot_uri parsed_data['description'] = None # placeholder return parsed_data def __len__(self): return self.len_data def __getitem__(self, index): return self.load_data(index) '''Prepare candiate list for each phrase and append to data_list''' class Wikidata_Geocoord_Dataset(SpatialDataset): #DEFAULT_CONFIG_CLS = SpatialBertConfig def __init__(self, data_file_path, tokenizer=None, max_token_len = 512, distance_norm_factor = 0.0001, spatial_dist_fill=100, sep_between_neighbors = False): if tokenizer is None: self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') else: self.tokenizer = tokenizer self.max_token_len = max_token_len self.spatial_dist_fill = spatial_dist_fill # should be normalized distance fill, larger than all normalized neighbor distance self.sep_between_neighbors = sep_between_neighbors self.read_file(data_file_path) super(Wikidata_Geocoord_Dataset, self).__init__(self.tokenizer , max_token_len , distance_norm_factor, sep_between_neighbors ) def read_file(self, data_file_path): with open(data_file_path, 'r') as f: data = f.readlines() len_data = len(data) self.len_data = len_data self.data = data def load_data(self, index): spatial_dist_fill = self.spatial_dist_fill line = self.data[index] # take one line from the input data according to the index line_data = json.loads(line) parsed_data_list = [] for line_data_dict in line_data: # process pivot pivot_name = line_data_dict['info']['name'] pivot_pos = line_data_dict['info']['geometry']['coordinates'] pivot_uri = line_data_dict['info']['uri'] neighbor_info = line_data_dict['neighbor_info'] neighbor_name_list = neighbor_info['name_list'] neighbor_geometry_list = neighbor_info['geometry_list'] parsed_data = self.parse_spatial_context(pivot_name, pivot_pos, neighbor_name_list, neighbor_geometry_list, spatial_dist_fill ) parsed_data['uri'] = pivot_uri parsed_data['description'] = None # placeholder parsed_data_list.append(parsed_data) return parsed_data_list def __len__(self): return self.len_data def __getitem__(self, index): return self.load_data(index)