Spaces:
Runtime error
Runtime error
File size: 35,392 Bytes
9f56f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
// jpge.cpp - C++ class for JPEG compression.
// Public domain, Rich Geldreich <[email protected]>
// v1.01, Dec. 18, 2010 - Initial release
// v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.)
// v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc.
// Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03).
// v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug.
// Code tweaks to fix VS2008 static code analysis warnings (all looked harmless).
// Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02.
#include "jpge.h"
#include <stdlib.h>
#include <string.h>
#if PLATFORM_WINDOWS
#include <malloc.h>
#endif
#define JPGE_MAX(a,b) (((a)>(b))?(a):(b))
#define JPGE_MIN(a,b) (((a)<(b))?(a):(b))
namespace jpge {
static inline void *jpge_malloc(size_t nSize) { return FMemory::Malloc(nSize); }
static inline void jpge_free(void *p) { FMemory::Free(p);; }
// Various JPEG enums and tables.
enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 };
enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 };
static uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 };
static int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 };
static int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 };
static uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 };
static uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
static uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d };
static uint8 s_ac_lum_val[AC_LUM_CODES] =
{
0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,
0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,
0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
0xf9,0xfa
};
static uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 };
static uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
static uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };
static uint8 s_ac_chroma_val[AC_CHROMA_CODES] =
{
0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,
0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,
0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,
0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
0xf9,0xfa
};
// Low-level helper functions.
template <class T> inline void clear_obj(T &obj) { memset(&obj, 0, sizeof(obj)); }
const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329;
static inline uint8 clamp(int i) { if (static_cast<uint>(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return static_cast<uint8>(i); }
static void RGB_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels)
{
for ( ; num_pixels; pDst += 3, pSrc += 3, num_pixels--)
{
const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
}
}
static void RGB_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels)
{
for ( ; num_pixels; pDst++, pSrc += 3, num_pixels--)
pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
}
static void RGBA_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels)
{
for ( ; num_pixels; pDst += 3, pSrc += 4, num_pixels--)
{
const int r = pSrc[0], g = pSrc[1], b = pSrc[2];
pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16);
pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16));
pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16));
}
}
static void RGBA_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels)
{
for ( ; num_pixels; pDst++, pSrc += 4, num_pixels--)
pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16);
}
static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels)
{
for( ; num_pixels; pDst += 3, pSrc++, num_pixels--) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; }
}
// Forward DCT - DCT derived from jfdctint.
#define CONST_BITS 13
#define ROW_BITS 2
#define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n))
#define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c))
#define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \
int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \
int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \
int32 u1 = DCT_MUL(t12 + t13, 4433); \
s2 = u1 + DCT_MUL(t13, 6270); \
s6 = u1 + DCT_MUL(t12, -15137); \
u1 = t4 + t7; \
int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \
int32 z5 = DCT_MUL(u3 + u4, 9633); \
t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \
t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \
u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \
u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \
u3 += z5; u4 += z5; \
s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3;
static void DCT2D(int32 *p)
{
int32 c, *q = p;
for (c = 7; c >= 0; c--, q += 8)
{
int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7];
DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
q[0] = s0 << ROW_BITS; q[1] = DCT_DESCALE(s1, CONST_BITS-ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS-ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS-ROW_BITS);
q[4] = s4 << ROW_BITS; q[5] = DCT_DESCALE(s5, CONST_BITS-ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS-ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS-ROW_BITS);
}
for (q = p, c = 7; c >= 0; c--, q++)
{
int32 s0 = q[0*8], s1 = q[1*8], s2 = q[2*8], s3 = q[3*8], s4 = q[4*8], s5 = q[5*8], s6 = q[6*8], s7 = q[7*8];
DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
q[0*8] = DCT_DESCALE(s0, ROW_BITS+3); q[1*8] = DCT_DESCALE(s1, CONST_BITS+ROW_BITS+3); q[2*8] = DCT_DESCALE(s2, CONST_BITS+ROW_BITS+3); q[3*8] = DCT_DESCALE(s3, CONST_BITS+ROW_BITS+3);
q[4*8] = DCT_DESCALE(s4, ROW_BITS+3); q[5*8] = DCT_DESCALE(s5, CONST_BITS+ROW_BITS+3); q[6*8] = DCT_DESCALE(s6, CONST_BITS+ROW_BITS+3); q[7*8] = DCT_DESCALE(s7, CONST_BITS+ROW_BITS+3);
}
}
struct sym_freq { uint m_key, m_sym_index; };
// Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values.
static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1)
{
const uint cMaxPasses = 4;
uint32 hist[256 * cMaxPasses]; clear_obj(hist);
for (uint i = 0; i < num_syms; i++) { uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; hist[256*2 + ((freq >> 16) & 0xFF)]++; hist[256*3 + ((freq >> 24) & 0xFF)]++; }
sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1;
uint total_passes = cMaxPasses; while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--;
for (uint pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
{
const uint32* pHist = &hist[pass << 8];
uint offsets[256], cur_ofs = 0;
for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
for (uint i = 0; i < num_syms; i++)
pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t;
}
return pCur_syms;
}
// calculate_minimum_redundancy() originally written by: Alistair Moffat, [email protected], Jyrki Katajainen, [email protected], November 1996.
static void calculate_minimum_redundancy(sym_freq *A, int n)
{
int root, leaf, next, avbl, used, dpth;
if (n==0) return; else if (n==1) { A[0].m_key = 1; return; }
A[0].m_key += A[1].m_key; root = 0; leaf = 2;
for (next=1; next < n-1; next++)
{
if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } else A[next].m_key = A[leaf++].m_key;
if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } else A[next].m_key += A[leaf++].m_key;
}
A[n-2].m_key = 0;
for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1;
avbl = 1; used = dpth = 0; root = n-2; next = n-1;
while (avbl>0)
{
while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; }
while (avbl>used) { A[next--].m_key = dpth; avbl--; }
avbl = 2*used; dpth++; used = 0;
}
}
// Limits canonical Huffman code table's max code size to max_code_size.
static void huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
{
if (code_list_len <= 1) return;
for (int i = max_code_size + 1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];
uint32 total = 0;
for (int i = max_code_size; i > 0; i--)
total += (((uint32)pNum_codes[i]) << (max_code_size - i));
while (total != (1UL << max_code_size))
{
pNum_codes[max_code_size]--;
for (int i = max_code_size - 1; i > 0; i--)
{
if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; }
}
total--;
}
}
// Generates an optimized offman table.
void jpeg_encoder::optimize_huffman_table(int table_num, int table_len)
{
sym_freq syms0[MAX_HUFF_SYMBOLS], syms1[MAX_HUFF_SYMBOLS];
syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's
int num_used_syms = 1;
const uint32 *pSym_count = &m_huff_count[table_num][0];
for (int i = 0; i < table_len; i++)
if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i + 1; }
sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0, syms1);
calculate_minimum_redundancy(pSyms, num_used_syms);
// Count the # of symbols of each code size.
int num_codes[1 + MAX_HUFF_CODESIZE]; clear_obj(num_codes);
for (int i = 0; i < num_used_syms; i++)
num_codes[pSyms[i].m_key]++;
const uint JPGE_CODE_SIZE_LIMIT = 16; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol)
huffman_enforce_max_code_size(num_codes, num_used_syms, JPGE_CODE_SIZE_LIMIT);
// Compute m_huff_bits array, which contains the # of symbols per code size.
clear_obj(m_huff_bits[table_num]);
for (int i = 1; i <= (int)JPGE_CODE_SIZE_LIMIT; i++)
m_huff_bits[table_num][i] = static_cast<uint8>(num_codes[i]);
// Remove the dummy symbol added above, which must be in largest bucket.
for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--)
{
if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; }
}
// Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest).
for (int i = num_used_syms - 1; i >= 1; i--)
m_huff_val[table_num][num_used_syms - 1 - i] = static_cast<uint8>(pSyms[i].m_sym_index - 1);
}
// JPEG marker generation.
void jpeg_encoder::emit_byte(uint8 i)
{
m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_obj(i);
}
void jpeg_encoder::emit_word(uint i)
{
emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF));
}
void jpeg_encoder::emit_marker(int marker)
{
emit_byte(uint8(0xFF)); emit_byte(uint8(marker));
}
// Emit JFIF marker
void jpeg_encoder::emit_jfif_app0()
{
emit_marker(M_APP0);
emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1);
emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */
emit_byte(0);
emit_byte(1); /* Major version */
emit_byte(1); /* Minor version */
emit_byte(0); /* Density unit */
emit_word(1);
emit_word(1);
emit_byte(0); /* No thumbnail image */
emit_byte(0);
}
// Emit quantization tables
void jpeg_encoder::emit_dqt()
{
for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++)
{
emit_marker(M_DQT);
emit_word(64 + 1 + 2);
emit_byte(static_cast<uint8>(i));
for (int j = 0; j < 64; j++)
emit_byte(static_cast<uint8>(m_quantization_tables[i][j]));
}
}
// Emit start of frame marker
void jpeg_encoder::emit_sof()
{
emit_marker(M_SOF0); /* baseline */
emit_word(3 * m_num_components + 2 + 5 + 1);
emit_byte(8); /* precision */
emit_word(m_image_y);
emit_word(m_image_x);
emit_byte(m_num_components);
for (int i = 0; i < m_num_components; i++)
{
emit_byte(static_cast<uint8>(i + 1)); /* component ID */
emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */
emit_byte(i > 0); /* quant. table num */
}
}
// Emit Huffman table.
void jpeg_encoder::emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag)
{
emit_marker(M_DHT);
int length = 0;
for (int i = 1; i <= 16; i++)
length += bits[i];
emit_word(length + 2 + 1 + 16);
emit_byte(static_cast<uint8>(index + (ac_flag << 4)));
for (int i = 1; i <= 16; i++)
emit_byte(bits[i]);
for (int i = 0; i < length; i++)
emit_byte(val[i]);
}
// Emit all Huffman tables.
void jpeg_encoder::emit_dhts()
{
emit_dht(m_huff_bits[0+0], m_huff_val[0+0], 0, false);
emit_dht(m_huff_bits[2+0], m_huff_val[2+0], 0, true);
if (m_num_components == 3)
{
emit_dht(m_huff_bits[0+1], m_huff_val[0+1], 1, false);
emit_dht(m_huff_bits[2+1], m_huff_val[2+1], 1, true);
}
}
// emit start of scan
void jpeg_encoder::emit_sos()
{
emit_marker(M_SOS);
emit_word(2 * m_num_components + 2 + 1 + 3);
emit_byte(m_num_components);
for (int i = 0; i < m_num_components; i++)
{
emit_byte(static_cast<uint8>(i + 1));
if (i == 0)
emit_byte((0 << 4) + 0);
else
emit_byte((1 << 4) + 1);
}
emit_byte(0); /* spectral selection */
emit_byte(63);
emit_byte(0);
}
// Emit all markers at beginning of image file.
void jpeg_encoder::emit_markers()
{
emit_marker(M_SOI);
emit_jfif_app0();
emit_dqt();
emit_sof();
emit_dhts();
emit_sos();
}
// Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays.
void jpeg_encoder::compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val)
{
int i, l, last_p, si;
uint8 huff_size[257];
uint huff_code[257];
uint code;
int p = 0;
for (l = 1; l <= 16; l++)
for (i = 1; i <= bits[l]; i++)
huff_size[p++] = (char)l;
huff_size[p] = 0; last_p = p; // write sentinel
code = 0; si = huff_size[0]; p = 0;
while (huff_size[p])
{
while (huff_size[p] == si)
huff_code[p++] = code++;
code <<= 1;
si++;
}
memset(codes, 0, sizeof(codes[0])*256);
memset(code_sizes, 0, sizeof(code_sizes[0])*256);
for (p = 0; p < last_p; p++)
{
codes[val[p]] = huff_code[p];
code_sizes[val[p]] = huff_size[p];
}
}
// Quantization table generation.
void jpeg_encoder::compute_quant_table(int32 *pDst, int16 *pSrc)
{
int32 q;
if (m_params.m_quality < 50)
q = 5000 / m_params.m_quality;
else
q = 200 - m_params.m_quality * 2;
for (int i = 0; i < 64; i++)
{
int32 j = *pSrc++; j = (j * q + 50L) / 100L;
*pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255);
}
}
// Higher-level methods.
void jpeg_encoder::first_pass_init()
{
m_bit_buffer = 0; m_bits_in = 0;
memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0]));
m_mcu_y_ofs = 0;
m_pass_num = 1;
}
bool jpeg_encoder::second_pass_init()
{
compute_huffman_table(&m_huff_codes[0+0][0], &m_huff_code_sizes[0+0][0], m_huff_bits[0+0], m_huff_val[0+0]);
compute_huffman_table(&m_huff_codes[2+0][0], &m_huff_code_sizes[2+0][0], m_huff_bits[2+0], m_huff_val[2+0]);
if (m_num_components > 1)
{
compute_huffman_table(&m_huff_codes[0+1][0], &m_huff_code_sizes[0+1][0], m_huff_bits[0+1], m_huff_val[0+1]);
compute_huffman_table(&m_huff_codes[2+1][0], &m_huff_code_sizes[2+1][0], m_huff_bits[2+1], m_huff_val[2+1]);
}
first_pass_init();
emit_markers();
m_pass_num = 2;
return true;
}
bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels)
{
m_num_components = 3;
switch (m_params.m_subsampling)
{
case Y_ONLY:
{
m_num_components = 1;
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
m_mcu_x = 8; m_mcu_y = 8;
break;
}
case H1V1:
{
m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 8; m_mcu_y = 8;
break;
}
case H2V1:
{
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 16; m_mcu_y = 8;
break;
}
case H2V2:
{
m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2;
m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
m_mcu_x = 16; m_mcu_y = 16;
}
}
m_image_x = p_x_res; m_image_y = p_y_res;
m_image_bpp = src_channels;
m_image_bpl = m_image_x * src_channels;
m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1));
m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1));
m_image_bpl_xlt = m_image_x * m_num_components;
m_image_bpl_mcu = m_image_x_mcu * m_num_components;
m_mcus_per_row = m_image_x_mcu / m_mcu_x;
if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false;
for (int i = 1; i < m_mcu_y; i++)
m_mcu_lines[i] = m_mcu_lines[i-1] + m_image_bpl_mcu;
compute_quant_table(m_quantization_tables[0], s_std_lum_quant);
compute_quant_table(m_quantization_tables[1], m_params.m_no_chroma_discrim_flag ? s_std_lum_quant : s_std_croma_quant);
m_out_buf_left = JPGE_OUT_BUF_SIZE;
m_pOut_buf = m_out_buf;
if (m_params.m_two_pass_flag)
{
clear_obj(m_huff_count);
first_pass_init();
}
else
{
memcpy(m_huff_bits[0+0], s_dc_lum_bits, 17); memcpy(m_huff_val [0+0], s_dc_lum_val, DC_LUM_CODES);
memcpy(m_huff_bits[2+0], s_ac_lum_bits, 17); memcpy(m_huff_val [2+0], s_ac_lum_val, AC_LUM_CODES);
memcpy(m_huff_bits[0+1], s_dc_chroma_bits, 17); memcpy(m_huff_val [0+1], s_dc_chroma_val, DC_CHROMA_CODES);
memcpy(m_huff_bits[2+1], s_ac_chroma_bits, 17); memcpy(m_huff_val [2+1], s_ac_chroma_val, AC_CHROMA_CODES);
if (!second_pass_init()) return false; // in effect, skip over the first pass
}
return m_all_stream_writes_succeeded;
}
void jpeg_encoder::load_block_8_8_grey(int x)
{
uint8 *pSrc;
sample_array_t *pDst = m_sample_array;
x <<= 3;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc = m_mcu_lines[i] + x;
pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128;
pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128;
}
}
void jpeg_encoder::load_block_8_8(int x, int y, int c)
{
uint8 *pSrc;
sample_array_t *pDst = m_sample_array;
x = (x * (8 * 3)) + c;
y <<= 3;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc = m_mcu_lines[y + i] + x;
pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128;
pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128;
}
}
void jpeg_encoder::load_block_16_8(int x, int c)
{
uint8 *pSrc1, *pSrc2;
sample_array_t *pDst = m_sample_array;
x = (x * (16 * 3)) + c;
int a = 0, b = 2;
for (int i = 0; i < 16; i += 2, pDst += 8)
{
pSrc1 = m_mcu_lines[i + 0] + x;
pSrc2 = m_mcu_lines[i + 1] + x;
pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3] + pSrc2[ 0 * 3] + pSrc2[ 1 * 3] + a) >> 2) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3] + pSrc2[ 2 * 3] + pSrc2[ 3 * 3] + b) >> 2) - 128;
pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3] + pSrc2[ 4 * 3] + pSrc2[ 5 * 3] + a) >> 2) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3] + pSrc2[ 6 * 3] + pSrc2[ 7 * 3] + b) >> 2) - 128;
pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3] + pSrc2[ 8 * 3] + pSrc2[ 9 * 3] + a) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + b) >> 2) - 128;
pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + a) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + b) >> 2) - 128;
int temp = a; a = b; b = temp;
}
}
void jpeg_encoder::load_block_16_8_8(int x, int c)
{
uint8 *pSrc1;
sample_array_t *pDst = m_sample_array;
x = (x * (16 * 3)) + c;
for (int i = 0; i < 8; i++, pDst += 8)
{
pSrc1 = m_mcu_lines[i + 0] + x;
pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3]) >> 1) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3]) >> 1) - 128;
pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3]) >> 1) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3]) >> 1) - 128;
pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3]) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3]) >> 1) - 128;
pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3]) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3]) >> 1) - 128;
}
}
void jpeg_encoder::load_quantized_coefficients(int component_num)
{
int32 *q = m_quantization_tables[component_num > 0];
int16 *pDst = m_coefficient_array;
for (int i = 0; i < 64; i++)
{
sample_array_t j = m_sample_array[s_zag[i]];
if (j < 0)
{
if ((j = -j + (*q >> 1)) < *q)
*pDst++ = 0;
else
*pDst++ = static_cast<int16>(-(j / *q));
}
else
{
if ((j = j + (*q >> 1)) < *q)
*pDst++ = 0;
else
*pDst++ = static_cast<int16>((j / *q));
}
q++;
}
}
void jpeg_encoder::flush_output_buffer()
{
if (m_out_buf_left != JPGE_OUT_BUF_SIZE)
m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left);
m_pOut_buf = m_out_buf;
m_out_buf_left = JPGE_OUT_BUF_SIZE;
}
void jpeg_encoder::put_bits(uint bits, uint len)
{
m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len)));
while (m_bits_in >= 8)
{
uint8 c;
#define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); }
JPGE_PUT_BYTE(c = (uint8)((m_bit_buffer >> 16) & 0xFF));
if (c == 0xFF) JPGE_PUT_BYTE(0);
m_bit_buffer <<= 8;
m_bits_in -= 8;
}
}
void jpeg_encoder::code_coefficients_pass_one(int component_num)
{
if (component_num >= 3) return; // just to shut up static analysis
int i, run_len, nbits, temp1;
int16 *src = m_coefficient_array;
uint32 *dc_count = component_num ? m_huff_count[0 + 1] : m_huff_count[0 + 0], *ac_count = component_num ? m_huff_count[2 + 1] : m_huff_count[2 + 0];
temp1 = src[0] - m_last_dc_val[component_num];
m_last_dc_val[component_num] = src[0];
if (temp1 < 0) temp1 = -temp1;
nbits = 0;
while (temp1)
{
nbits++; temp1 >>= 1;
}
dc_count[nbits]++;
for (run_len = 0, i = 1; i < 64; i++)
{
if ((temp1 = m_coefficient_array[i]) == 0)
run_len++;
else
{
while (run_len >= 16)
{
ac_count[0xF0]++;
run_len -= 16;
}
if (temp1 < 0) temp1 = -temp1;
nbits = 1;
while (temp1 >>= 1) nbits++;
ac_count[(run_len << 4) + nbits]++;
run_len = 0;
}
}
if (run_len) ac_count[0]++;
}
void jpeg_encoder::code_coefficients_pass_two(int component_num)
{
int i, j, run_len, nbits, temp1, temp2;
int16 *pSrc = m_coefficient_array;
uint *codes[2];
uint8 *code_sizes[2];
if (component_num == 0)
{
codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0];
code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0];
}
else
{
codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1];
code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1];
}
temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num];
m_last_dc_val[component_num] = pSrc[0];
if (temp1 < 0)
{
temp1 = -temp1; temp2--;
}
nbits = 0;
while (temp1)
{
nbits++; temp1 >>= 1;
}
put_bits(codes[0][nbits], code_sizes[0][nbits]);
if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits);
for (run_len = 0, i = 1; i < 64; i++)
{
if ((temp1 = m_coefficient_array[i]) == 0)
run_len++;
else
{
while (run_len >= 16)
{
put_bits(codes[1][0xF0], code_sizes[1][0xF0]);
run_len -= 16;
}
if ((temp2 = temp1) < 0)
{
temp1 = -temp1;
temp2--;
}
nbits = 1;
while (temp1 >>= 1)
nbits++;
j = (run_len << 4) + nbits;
put_bits(codes[1][j], code_sizes[1][j]);
put_bits(temp2 & ((1 << nbits) - 1), nbits);
run_len = 0;
}
}
if (run_len)
put_bits(codes[1][0], code_sizes[1][0]);
}
void jpeg_encoder::code_block(int component_num)
{
DCT2D(m_sample_array);
load_quantized_coefficients(component_num);
if (m_pass_num == 1)
code_coefficients_pass_one(component_num);
else
code_coefficients_pass_two(component_num);
}
void jpeg_encoder::process_mcu_row()
{
if (m_num_components == 1)
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8_grey(i); code_block(0);
}
}
else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2);
}
}
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2);
}
}
else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
{
for (int i = 0; i < m_mcus_per_row; i++)
{
load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0);
load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0);
load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2);
}
}
}
bool jpeg_encoder::terminate_pass_one()
{
optimize_huffman_table(0+0, DC_LUM_CODES); optimize_huffman_table(2+0, AC_LUM_CODES);
if (m_num_components > 1)
{
optimize_huffman_table(0+1, DC_CHROMA_CODES); optimize_huffman_table(2+1, AC_CHROMA_CODES);
}
return second_pass_init();
}
bool jpeg_encoder::terminate_pass_two()
{
put_bits(0x7F, 7);
flush_output_buffer();
emit_marker(M_EOI);
m_pass_num++; // purposely bump up m_pass_num, for debugging
return true;
}
bool jpeg_encoder::process_end_of_image()
{
if (m_mcu_y_ofs)
{
if (m_mcu_y_ofs < 16) // check here just to shut up static analysis
{
for (int i = m_mcu_y_ofs; i < m_mcu_y; i++)
memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu);
}
process_mcu_row();
}
if (m_pass_num == 1)
return terminate_pass_one();
else
return terminate_pass_two();
}
void jpeg_encoder::load_mcu(const void *pSrc)
{
const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc);
uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst
if (m_num_components == 1)
{
if (m_image_bpp == 4)
RGBA_to_Y(pDst, Psrc, m_image_x);
else if (m_image_bpp == 3)
RGB_to_Y(pDst, Psrc, m_image_x);
else
memcpy(pDst, Psrc, m_image_x);
}
else
{
if (m_image_bpp == 4)
RGBA_to_YCC(pDst, Psrc, m_image_x);
else if (m_image_bpp == 3)
RGB_to_YCC(pDst, Psrc, m_image_x);
else
Y_to_YCC(pDst, Psrc, m_image_x);
}
// Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16
if (m_num_components == 1)
memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x);
else
{
const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2];
uint8 *q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt;
for (int i = m_image_x; i < m_image_x_mcu; i++)
{
*q++ = y; *q++ = cb; *q++ = cr;
}
}
if (++m_mcu_y_ofs == m_mcu_y)
{
process_mcu_row();
m_mcu_y_ofs = 0;
}
}
void jpeg_encoder::clear()
{
m_mcu_lines[0] = NULL;
m_pass_num = 0;
m_all_stream_writes_succeeded = true;
}
jpeg_encoder::jpeg_encoder()
{
clear();
}
jpeg_encoder::~jpeg_encoder()
{
deinit();
}
bool jpeg_encoder::init(output_stream *pStream, int64_t width, int64_t height, int64_t src_channels, const params &comp_params)
{
deinit();
if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check_valid())) return false;
m_pStream = pStream;
m_params = comp_params;
return jpg_open(width, height, src_channels);
}
void jpeg_encoder::deinit()
{
jpge_free(m_mcu_lines[0]);
clear();
}
bool jpeg_encoder::process_scanline(const void* pScanline)
{
if ((m_pass_num < 1) || (m_pass_num > 2)) return false;
if (m_all_stream_writes_succeeded)
{
if (!pScanline)
{
if (!process_end_of_image()) return false;
}
else
{
load_mcu(pScanline);
}
}
return m_all_stream_writes_succeeded;
}
// Higher level wrappers/examples (optional).
#include <stdio.h>
class cfile_stream : public output_stream
{
cfile_stream(const cfile_stream &);
cfile_stream &operator= (const cfile_stream &);
FILE* m_pFile;
bool m_bStatus;
public:
cfile_stream() : m_pFile(NULL), m_bStatus(false) { }
virtual ~cfile_stream()
{
close();
}
bool open(const char *pFilename)
{
close();
#if defined(_MSC_VER)
if (fopen_s(&m_pFile, pFilename, "wb") != 0)
{
return false;
}
#else
m_pFile = fopen(pFilename, "wb");
#endif
m_bStatus = (m_pFile != NULL);
return m_bStatus;
}
bool close()
{
if (m_pFile)
{
if (fclose(m_pFile) == EOF)
{
m_bStatus = false;
}
m_pFile = NULL;
}
return m_bStatus;
}
virtual bool put_buf(const void* pBuf, int64_t len)
{
m_bStatus = m_bStatus && (fwrite(pBuf, len, 1, m_pFile) == 1);
return m_bStatus;
}
uint get_size() const
{
return m_pFile ? ftell(m_pFile) : 0;
}
};
// Writes JPEG image to file.
bool compress_image_to_jpeg_file(const char *pFilename, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params)
{
cfile_stream dst_stream;
if (!dst_stream.open(pFilename))
return false;
jpge::jpeg_encoder dst_image;
if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params))
return false;
for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++)
{
for (int64_t i = 0; i < height; i++)
{
// i, width, and num_channels are all 64bit
const uint8* pBuf = pImage_data + i * width * num_channels;
if (!dst_image.process_scanline(pBuf))
return false;
}
if (!dst_image.process_scanline(NULL))
return false;
}
dst_image.deinit();
return dst_stream.close();
}
class memory_stream : public output_stream
{
memory_stream(const memory_stream &);
memory_stream &operator= (const memory_stream &);
uint8 *m_pBuf;
uint64_t m_buf_size, m_buf_ofs;
public:
memory_stream(void *pBuf, uint64_t buf_size) : m_pBuf(static_cast<uint8*>(pBuf)), m_buf_size(buf_size), m_buf_ofs(0) { }
virtual ~memory_stream() { }
virtual bool put_buf(const void* pBuf, int64_t len)
{
uint64_t buf_remaining = m_buf_size - m_buf_ofs;
if ((uint64_t)len > buf_remaining)
return false;
memcpy(m_pBuf + m_buf_ofs, pBuf, len);
m_buf_ofs += len;
return true;
}
uint64_t get_size() const
{
return m_buf_ofs;
}
};
bool compress_image_to_jpeg_file_in_memory(void *pDstBuf, int64_t &buf_size, int64_t width, int64_t height, int64_t num_channels, const uint8 *pImage_data, const params &comp_params)
{
if ((!pDstBuf) || (!buf_size))
return false;
memory_stream dst_stream(pDstBuf, buf_size);
buf_size = 0;
jpge::jpeg_encoder dst_image;
if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params))
return false;
for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++)
{
for (int64_t i = 0; i < height; i++)
{
const uint8* pScanline = pImage_data + i * width * num_channels;
if (!dst_image.process_scanline(pScanline))
return false;
}
if (!dst_image.process_scanline(NULL))
return false;
}
dst_image.deinit();
buf_size = dst_stream.get_size();
return true;
}
} // namespace jpge |