Spaces:
Sleeping
Sleeping
File size: 30,151 Bytes
435fa46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
from toolbox import update_ui, get_conf, trimmed_format_exc
def input_clipping(inputs, history, max_token_limit):
import numpy as np
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs)
if input_token_num < max_token_limit//2:
mode = 'only-history'
max_token_limit = max_token_limit - input_token_num
everything = [inputs] if mode == 'input-and-history' else ['']
everything.extend(history)
n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything]
delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit:
where = np.argmax(everything_token)
encoded = enc.encode(everything[where], disallowed_special=())
clipped_encoded = encoded[:len(encoded)-delta]
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where])
n_token = get_token_num('\n'.join(everything))
if mode == 'input-and-history':
inputs = everything[0]
else:
pass
history = everything[1:]
return inputs, history
def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, llm_kwargs,
chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True,
retry_times_at_unknown_error=2,
):
"""
Request GPT model,请求GPT模型同时维持用户界面活跃。
输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行):
inputs (string): List of inputs (输入)
inputs_show_user (string): List of inputs to show user(展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性)
top_p (float): Top p value for sampling from model distribution (GPT参数,浮点数)
temperature (float): Temperature value for sampling from model distribution(GPT参数,浮点数)
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化)
history (list): List of chat history (历史,对话历史列表)
sys_prompt (string): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样)
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果)
handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启
retry_times_at_unknown_error:失败时的重试次数
输出 Returns:
future: 输出,GPT返回的结果
"""
import time
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_all import predict_no_ui_long_connection
# 用户反馈
chatbot.append([inputs_show_user, ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time(), ""]
def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
while True:
# watchdog error
if len(mutable) >= 2 and (time.time()-mutable[1]) > 5:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
result = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs,
history=history, sys_prompt=sys_prompt, observe_window=mutable)
return result
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】:Token溢出
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n'
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + trimmed_format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
return mutable[0] # 放弃
except:
# 【第三种情况】:其他错误:重试几次
tb_str = '```\n' + trimmed_format_exc() + '```'
print(tb_str)
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
if retry_op > 0:
retry_op -= 1
mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}:\n\n"
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
time.sleep(30)
time.sleep(5)
continue # 返回重试
else:
time.sleep(5)
return mutable[0] # 放弃
# 提交任务
future = executor.submit(_req_gpt, inputs, history, sys_prompt)
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
# “喂狗”(看门狗)
mutable[1] = time.time()
if future.done():
break
chatbot[-1] = [chatbot[-1][0], mutable[0]]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
final_result = future.result()
chatbot[-1] = [chatbot[-1][0], final_result]
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
return final_result
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2,
):
"""
Request GPT model using multiple threads with UI and high efficiency
请求GPT模型的[多线程]版。
具备以下功能:
实时在UI上反馈远程数据流
使用线程池,可调节线程池的大小避免openai的流量限制错误
处理中途中止的情况
网络等出问题时,会把traceback和已经接收的数据转入输出
输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行):
inputs_array (list): List of inputs (每个子任务的输入)
inputs_show_user_array (list): List of inputs to show user(每个子任务展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性)
llm_kwargs: llm_kwargs参数
chatbot: chatbot (用户界面对话窗口句柄,用于数据流可视化)
history_array (list): List of chat history (历史对话输入,双层列表,第一层列表是子任务分解,第二层列表是对话历史)
sys_prompt_array (list): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样)
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果)
max_workers (int, optional): Maximum number of threads (default: see config.py) (最大线程数,如果子任务非常多,需要用此选项防止高频地请求openai导致错误)
scroller_max_len (int, optional): Maximum length for scroller (default: 30)(数据流的显示最后收到的多少个字符,仅仅服务于视觉效果)
handle_token_exceed (bool, optional): (是否在输入过长时,自动缩减文本)
handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启
show_user_at_complete (bool, optional): (在结束时,把完整输入-输出结果显示在聊天框)
retry_times_at_unknown_error:子任务失败时的重试次数
输出 Returns:
list: List of GPT model responses (每个子任务的输出汇总,如果某个子任务出错,response中会携带traceback报错信息,方便调试和定位问题。)
"""
import time, random
from concurrent.futures import ThreadPoolExecutor
from request_llm.bridge_all import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array)
assert len(inputs_array) == len(sys_prompt_array)
if max_workers == -1: # 读取配置文件
try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
except: max_workers = 8
if max_workers <= 0: max_workers = 3
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
if not (llm_kwargs['llm_model'].startswith('gpt-') or llm_kwargs['llm_model'].startswith('api2d-')):
max_workers = 1
executor = ThreadPoolExecutor(max_workers=max_workers)
n_frag = len(inputs_array)
# 用户反馈
chatbot.append(["请开始多线程操作。", ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
# 跨线程传递
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
# 子线程任务
def _req_gpt(index, inputs, history, sys_prompt):
gpt_say = ""
retry_op = retry_times_at_unknown_error
exceeded_cnt = 0
mutable[index][2] = "执行中"
while True:
# watchdog error
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5:
raise RuntimeError("检测到程序终止。")
try:
# 【第一种情况】:顺利完成
# time.sleep(10); raise RuntimeError("测试")
gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
)
mutable[index][2] = "已成功"
return gpt_say
except ConnectionAbortedError as token_exceeded_error:
# 【第二种情况】:Token溢出,
if handle_token_exceed:
exceeded_cnt += 1
# 【选择处理】 尝试计算比例,尽可能多地保留文本
from toolbox import get_reduce_token_percent
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n'
mutable[index][2] = f"截断重试"
continue # 返回重试
else:
# 【选择放弃】
tb_str = '```\n' + trimmed_format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
mutable[index][2] = "输入过长已放弃"
return gpt_say # 放弃
except:
# 【第三种情况】:其他错误
tb_str = '```\n' + trimmed_format_exc() + '```'
print(tb_str)
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
if retry_op > 0:
retry_op -= 1
wait = random.randint(5, 20)
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
wait = wait * 3
fail_info = "OpenAI绑定信用卡可解除频率限制 "
else:
fail_info = ""
# 也许等待十几秒后,情况会好转
for i in range(wait):
mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1)
# 开始重试
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
continue # 返回重试
else:
mutable[index][2] = "已失败"
wait = 5
time.sleep(5)
return gpt_say # 放弃
# 异步任务开始
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
cnt = 0
while True:
# yield一次以刷新前端页面
time.sleep(refresh_interval)
cnt += 1
worker_done = [h.done() for h in futures]
if all(worker_done):
executor.shutdown()
break
# 更好的UI视觉效果
observe_win = []
# 每个线程都要“喂狗”(看门狗)
for thread_index, _ in enumerate(worker_done):
mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
replace('\n', '').replace('```', '...').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n'
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
# 在前端打印些好玩的东西
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
# 异步任务结束
gpt_response_collection = []
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
gpt_response_collection.extend([inputs_show_user, gpt_res])
# 是否在结束时,在界面上显示结果
if show_user_at_complete:
for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
time.sleep(0.3)
return gpt_response_collection
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
def cut(txt_tocut, must_break_at_empty_line): # 递归
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
print(cnt)
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
raise RuntimeError("存在一行极长的文本!")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line))
return result
try:
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
return cut(txt, must_break_at_empty_line=False)
def force_breakdown(txt, limit, get_token_fn):
"""
当无法用标点、空行分割时,我们用最暴力的方法切割
"""
for i in reversed(range(len(txt))):
if get_token_fn(txt[:i]) < limit:
return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误"
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
# 递归
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
if get_token_fn(txt_tocut) <= limit:
return [txt_tocut]
else:
lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut)
cnt = 0
for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line:
if lines[cnt] != "":
continue
prev = "\n".join(lines[:cnt])
post = "\n".join(lines[cnt:])
if get_token_fn(prev) < limit:
break
if cnt == 0:
if break_anyway:
prev, post = force_breakdown(txt_tocut, limit, get_token_fn)
else:
raise RuntimeError(f"存在一行极长的文本!{txt_tocut}")
# print(len(post))
# 列表递归接龙
result = [prev]
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
return result
try:
# 第1次尝试,将双空行(\n\n)作为切分点
return cut(txt, must_break_at_empty_line=True)
except RuntimeError:
try:
# 第2次尝试,将单空行(\n)作为切分点
return cut(txt, must_break_at_empty_line=False)
except RuntimeError:
try:
# 第3次尝试,将英文句号(.)作为切分点
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('。\n', '.') for r in res]
except RuntimeError as e:
try:
# 第4次尝试,将中文句号(。)作为切分点
res = cut(txt.replace('。', '。。\n'), must_break_at_empty_line=False)
return [r.replace('。。\n', '。') for r in res]
except RuntimeError as e:
# 第5次尝试,没办法了,随便切一下敷衍吧
return cut(txt, must_break_at_empty_line=False, break_anyway=True)
def read_and_clean_pdf_text(fp):
"""
这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好
**输入参数说明**
- `fp`:需要读取和清理文本的pdf文件路径
**输出参数说明**
- `meta_txt`:清理后的文本内容字符串
- `page_one_meta`:第一页清理后的文本内容列表
**函数功能**
读取pdf文件并清理其中的文本内容,清理规则包括:
- 提取所有块元的文本信息,并合并为一个字符串
- 去除短块(字符数小于100)并替换为回车符
- 清理多余的空行
- 合并小写字母开头的段落块并替换为空格
- 清除重复的换行
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
"""
import fitz, copy
import re
import numpy as np
from colorful import print亮黄, print亮绿
fc = 0 # Index 0 文本
fs = 1 # Index 1 字体
fb = 2 # Index 2 框框
REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等)
REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的?时,判定为不是正文(有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化)
def primary_ffsize(l):
"""
提取文本块主字体
"""
fsize_statiscs = {}
for wtf in l['spans']:
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a,b):
"""
提取字体大小是否近似相等
"""
return abs((a-b)/max(a,b)) < 0.02
with fitz.open(fp) as doc:
meta_txt = []
meta_font = []
meta_line = []
meta_span = []
############################## <第 1 步,搜集初始信息> ##################################
for index, page in enumerate(doc):
# file_content += page.get_text()
text_areas = page.get_text("dict") # 获取页面上的文本信息
for t in text_areas['blocks']:
if 'lines' in t:
pf = 998
for l in t['lines']:
txt_line = "".join([wtf['text'] for wtf in l['spans']])
if len(txt_line) == 0: continue
pf = primary_ffsize(l)
meta_line.append([txt_line, pf, l['bbox'], l])
for wtf in l['spans']: # for l in t['lines']:
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
# meta_line.append(["NEW_BLOCK", pf])
# 块元提取 for each word segment with in line for each line cross-line words for each block
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
############################## <第 2 步,获取正文主字体> ##################################
fsize_statiscs = {}
for span in meta_span:
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
fsize_statiscs[span[1]] += span[2]
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
if REMOVE_FOOT_NOTE:
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
############################## <第 3 步,切分和重新整合> ##################################
mega_sec = []
sec = []
for index, line in enumerate(meta_line):
if index == 0:
sec.append(line[fc])
continue
if REMOVE_FOOT_NOTE:
if meta_line[index][fs] <= give_up_fize_threshold:
continue
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
# 尝试识别段落
if meta_line[index][fc].endswith('.') and\
(meta_line[index-1][fc] != 'NEW_BLOCK') and \
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
sec[-1] += line[fc]
sec[-1] += "\n\n"
else:
sec[-1] += " "
sec[-1] += line[fc]
else:
if (index+1 < len(meta_line)) and \
meta_line[index][fs] > main_fsize:
# 单行 + 字体大
mega_sec.append(copy.deepcopy(sec))
sec = []
sec.append("# " + line[fc])
else:
# 尝试识别section
if meta_line[index-1][fs] > meta_line[index][fs]:
sec.append("\n" + line[fc])
else:
sec.append(line[fc])
mega_sec.append(copy.deepcopy(sec))
finals = []
for ms in mega_sec:
final = " ".join(ms)
final = final.replace('- ', ' ')
finals.append(final)
meta_txt = finals
############################## <第 4 步,乱七八糟的后处理> ##################################
def 把字符太少的块清除为回车(meta_txt):
for index, block_txt in enumerate(meta_txt):
if len(block_txt) < 100:
meta_txt[index] = '\n'
return meta_txt
meta_txt = 把字符太少的块清除为回车(meta_txt)
def 清理多余的空行(meta_txt):
for index in reversed(range(1, len(meta_txt))):
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
meta_txt.pop(index)
return meta_txt
meta_txt = 清理多余的空行(meta_txt)
def 合并小写开头的段落块(meta_txt):
def starts_with_lowercase_word(s):
pattern = r"^[a-z]+"
match = re.match(pattern, s)
if match:
return True
else:
return False
for _ in range(100):
for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt):
if meta_txt[index-1] != '\n':
meta_txt[index-1] += ' '
else:
meta_txt[index-1] = ''
meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n'
return meta_txt
meta_txt = 合并小写开头的段落块(meta_txt)
meta_txt = 清理多余的空行(meta_txt)
meta_txt = '\n'.join(meta_txt)
# 清除重复的换行
for _ in range(5):
meta_txt = meta_txt.replace('\n\n', '\n')
# 换行 -> 双换行
meta_txt = meta_txt.replace('\n', '\n\n')
############################## <第 5 步,展示分割效果> ##################################
# for f in finals:
# print亮黄(f)
# print亮绿('***************************')
return meta_txt, page_one_meta
def get_files_from_everything(txt, type): # type='.md'
"""
这个函数是用来获取指定目录下所有指定类型(如.md)的文件,并且对于网络上的文件,也可以获取它。
下面是对每个参数和返回值的说明:
参数
- txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。
- type: 字符串,表示要搜索的文件类型。默认是.md。
返回值
- success: 布尔值,表示函数是否成功执行。
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。
- project_folder: 字符串,表示文件所在的文件夹路径。如果是网络上的文件,就是临时文件夹的路径。
该函数详细注释已添加,请确认是否满足您的需要。
"""
import glob, os
success = True
if txt.startswith('http'):
# 网络的远程文件
import requests
from toolbox import get_conf
proxies, = get_conf('proxies')
r = requests.get(txt, proxies=proxies)
with open('./gpt_log/temp'+type, 'wb+') as f: f.write(r.content)
project_folder = './gpt_log/'
file_manifest = ['./gpt_log/temp'+type]
elif txt.endswith(type):
# 直接给定文件
file_manifest = [txt]
project_folder = os.path.dirname(txt)
elif os.path.exists(txt):
# 本地路径,递归搜索
project_folder = txt
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*'+type, recursive=True)]
if len(file_manifest) == 0:
success = False
else:
project_folder = None
file_manifest = []
success = False
return success, file_manifest, project_folder
|