Fhamator-Demo / app.py
JasperV13's picture
Update app.py
e953af3 verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the models and tokenizers
tokenizer1 = AutoTokenizer.from_pretrained("JasperV13/Fhamator-30000")
model1 = AutoModelForCausalLM.from_pretrained("JasperV13/Fhamator-30000")
tokenizer2 = AutoTokenizer.from_pretrained("JasperV13/Fhamator-SFT")
model2 = AutoModelForCausalLM.from_pretrained("JasperV13/Fhamator-SFT")
def generate_text_fhamator(input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature):
input_ids = tokenizer1.encode(input_text, return_tensors='pt')
output = model1.generate(
input_ids,
max_length=max_length,
num_return_sequences=num_return_sequences,
no_repeat_ngram_size=no_repeat_ngram_size,
top_k=top_k,
top_p=top_p,
temperature=temperature,
do_sample=True
)
generated_texts = [tokenizer1.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)]
return "\n\n".join(generated_texts)
def generate_text_sft(input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature):
inputs = tokenizer2(input_text, return_tensors="pt")
output = model2.generate(
inputs['input_ids'],
max_length=max_length,
num_return_sequences=num_return_sequences,
no_repeat_ngram_size=no_repeat_ngram_size,
top_k=top_k,
top_p=top_p,
temperature=temperature,
do_sample=True
)
generated_texts = [tokenizer2.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)]
return "\n\n".join(generated_texts)
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("## 🤖✨ Fhamator: 3ata-Ja !")
with gr.Tab("📖 Explanation"):
gr.Markdown("""
# 📚 Explanation of the Work Done
Welcome to the **Fhamator** application! This app consists of three main tabs, each with a unique purpose:
1. **🔍 Explanation**: Provides an overview of what this app does and how it works.
2. **🧠 Fhamator Model**: Test the base 'Fhamator-30000' language model and tweak its hyperparameters to see how it performs.
3. **🚀 Fhamator-SFT Model**: Experiment with the fine-tuned 'Fhamator-SFT' model, designed for more specific tasks, also with customizable hyperparameters.
""")
with gr.Tab("Test Fhamator-30000 Model"):
with gr.Group():
input_text = gr.Textbox(label="Input Prompt", value="أعلنت السلطات ")
max_length = gr.Slider(50, 200, value=100, step=1, label="Max Length")
num_return_sequences = gr.Slider(1, 5, value=3, step=1, label="Number of Sequences")
no_repeat_ngram_size = gr.Slider(1, 5, value=2, step=1, label="No Repeat N-Gram Size")
top_k = gr.Slider(1, 100, value=50, step=1, label="Top K")
top_p = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="Top P")
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
output_text = gr.Textbox(label="Generated Texts", lines=8)
generate_btn = gr.Button("Generate")
generate_btn.click(
generate_text_fhamator,
inputs=[input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature],
outputs=output_text
)
with gr.Tab("Test Fhamator-SFT Model"):
with gr.Group():
input_text_sft = gr.Textbox(label="Instruction", value="السؤال :س - التاريخ المغربي؟\n\n: الجواب\n")
max_length = gr.Slider(50, 200, value=60, step=1, label="Max Length")
num_return_sequences = gr.Slider(1, 5, value=5, step=1, label="Number of Sequences")
no_repeat_ngram_size = gr.Slider(1, 5, value=2, step=1, label="No Repeat N-Gram Size")
top_k_sft = gr.Slider(1, 100, value=50, step=1, label="Top K")
top_p_sft = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="Top P")
temperature_sft = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
output_text_sft = gr.Textbox(label="Generated Texts", lines=8)
generate_btn_sft = gr.Button("Generate")
generate_btn_sft.click(
generate_text_sft,
inputs=[input_text_sft, max_length, num_return_sequences, no_repeat_ngram_size, top_k_sft, top_p_sft, temperature_sft],
outputs=output_text_sft
)
demo.launch(debug = True)