Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load the models and tokenizers | |
tokenizer1 = AutoTokenizer.from_pretrained("JasperV13/Fhamator-30000") | |
model1 = AutoModelForCausalLM.from_pretrained("JasperV13/Fhamator-30000") | |
tokenizer2 = AutoTokenizer.from_pretrained("JasperV13/Fhamator-SFT") | |
model2 = AutoModelForCausalLM.from_pretrained("JasperV13/Fhamator-SFT") | |
def generate_text_fhamator(input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature): | |
input_ids = tokenizer1.encode(input_text, return_tensors='pt') | |
output = model1.generate( | |
input_ids, | |
max_length=max_length, | |
num_return_sequences=num_return_sequences, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
do_sample=True | |
) | |
generated_texts = [tokenizer1.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)] | |
return "\n\n".join(generated_texts) | |
def generate_text_sft(input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature): | |
inputs = tokenizer2(input_text, return_tensors="pt") | |
output = model2.generate( | |
inputs['input_ids'], | |
max_length=max_length, | |
num_return_sequences=num_return_sequences, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
do_sample=True | |
) | |
generated_texts = [tokenizer2.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)] | |
return "\n\n".join(generated_texts) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("## 🤖✨ Fhamator: 3ata-Ja !") | |
with gr.Tab("📖 Explanation"): | |
gr.Markdown(""" | |
# 📚 Explanation of the Work Done | |
Welcome to the **Fhamator** application! This app consists of three main tabs, each with a unique purpose: | |
1. **🔍 Explanation**: Provides an overview of what this app does and how it works. | |
2. **🧠 Fhamator Model**: Test the base 'Fhamator-30000' language model and tweak its hyperparameters to see how it performs. | |
3. **🚀 Fhamator-SFT Model**: Experiment with the fine-tuned 'Fhamator-SFT' model, designed for more specific tasks, also with customizable hyperparameters. | |
""") | |
with gr.Tab("Test Fhamator-30000 Model"): | |
with gr.Group(): | |
input_text = gr.Textbox(label="Input Prompt", value="أعلنت السلطات ") | |
max_length = gr.Slider(50, 200, value=100, step=1, label="Max Length") | |
num_return_sequences = gr.Slider(1, 5, value=3, step=1, label="Number of Sequences") | |
no_repeat_ngram_size = gr.Slider(1, 5, value=2, step=1, label="No Repeat N-Gram Size") | |
top_k = gr.Slider(1, 100, value=50, step=1, label="Top K") | |
top_p = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="Top P") | |
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature") | |
output_text = gr.Textbox(label="Generated Texts", lines=8) | |
generate_btn = gr.Button("Generate") | |
generate_btn.click( | |
generate_text_fhamator, | |
inputs=[input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature], | |
outputs=output_text | |
) | |
with gr.Tab("Test Fhamator-SFT Model"): | |
with gr.Group(): | |
input_text_sft = gr.Textbox(label="Instruction", value="السؤال :س - التاريخ المغربي؟\n\n: الجواب\n") | |
max_length = gr.Slider(50, 200, value=60, step=1, label="Max Length") | |
num_return_sequences = gr.Slider(1, 5, value=5, step=1, label="Number of Sequences") | |
no_repeat_ngram_size = gr.Slider(1, 5, value=2, step=1, label="No Repeat N-Gram Size") | |
top_k_sft = gr.Slider(1, 100, value=50, step=1, label="Top K") | |
top_p_sft = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="Top P") | |
temperature_sft = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature") | |
output_text_sft = gr.Textbox(label="Generated Texts", lines=8) | |
generate_btn_sft = gr.Button("Generate") | |
generate_btn_sft.click( | |
generate_text_sft, | |
inputs=[input_text_sft, max_length, num_return_sequences, no_repeat_ngram_size, top_k_sft, top_p_sft, temperature_sft], | |
outputs=output_text_sft | |
) | |
demo.launch(debug = True) |