Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,66 @@
|
|
1 |
-
from langchain_community.llms.ctransformers import CTransformers
|
2 |
-
from langchain.chains.llm import LLMChain
|
3 |
-
from langchain.prompts import PromptTemplate
|
4 |
-
import os
|
5 |
-
import gradio as gr
|
6 |
-
import time
|
7 |
-
|
8 |
-
custom_prompt_template=""""
|
9 |
-
You are an AI coding assistant and your task is to solve coding problems
|
10 |
-
and return code snippets based on the user's query. Below is the user's query.
|
11 |
-
Query:{query}
|
12 |
-
You just return the helpful code and related details.
|
13 |
-
Helpful code and related details:
|
14 |
-
"""
|
15 |
-
|
16 |
-
def set_custom_prompt():
|
17 |
-
prompt=PromptTemplate(
|
18 |
-
template=custom_prompt_template,
|
19 |
-
input_variables=['query']
|
20 |
-
)
|
21 |
-
return prompt
|
22 |
-
|
23 |
-
def load_model():
|
24 |
-
llm=CTransformers(
|
25 |
-
model='codellama-7b-instruct.ggmlv3.Q4_K_M.bin',
|
26 |
-
model_type='llama',
|
27 |
-
max_new_tokens=1096,
|
28 |
-
temperature=0.2,
|
29 |
-
repetition_penalty=1.13
|
30 |
-
|
31 |
-
)
|
32 |
-
|
33 |
-
return llm
|
34 |
-
|
35 |
-
def chain_pipeline():
|
36 |
-
llm=load_model()
|
37 |
-
qa_prompt=set_custom_prompt()
|
38 |
-
qa_chain=LLMChain(
|
39 |
-
prompt=qa_prompt,
|
40 |
-
llm=llm
|
41 |
-
)
|
42 |
-
return qa_chain
|
43 |
-
|
44 |
-
llmchain=chain_pipeline()
|
45 |
-
|
46 |
-
def bot(query):
|
47 |
-
llm_response=llmchain.run({'query':query})
|
48 |
-
return llm_response
|
49 |
-
|
50 |
-
with gr.Blocks(title="Can AI code ? ") as demo:
|
51 |
-
gr.Markdown('# Code LLAMA demo')
|
52 |
-
chatbot=gr.Chatbot([],elem_id='chatbot',height=700)
|
53 |
-
msg=gr.Textbox()
|
54 |
-
clear=gr.ClearButton([msg,chatbot])
|
55 |
-
|
56 |
-
|
57 |
-
def respond(message,chat_history):
|
58 |
-
bot_message=bot(message)
|
59 |
-
chat_history.append((message,bot_message))
|
60 |
-
time.sleep(2)
|
61 |
-
return "",chat_history
|
62 |
-
|
63 |
-
msg.submit(respond,[msg,chatbot],[msg,chatbot])
|
64 |
-
|
65 |
-
|
66 |
demo.launch()
|
|
|
1 |
+
from langchain_community.llms.ctransformers import CTransformers
|
2 |
+
from langchain.chains.llm import LLMChain
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
import os
|
5 |
+
import gradio as gr
|
6 |
+
import time
|
7 |
+
|
8 |
+
custom_prompt_template=""""
|
9 |
+
You are an AI coding assistant and your task is to solve coding problems
|
10 |
+
and return code snippets based on the user's query. Below is the user's query.
|
11 |
+
Query:{query}
|
12 |
+
You just return the helpful code and related details.
|
13 |
+
Helpful code and related details:
|
14 |
+
"""
|
15 |
+
|
16 |
+
def set_custom_prompt():
|
17 |
+
prompt=PromptTemplate(
|
18 |
+
template=custom_prompt_template,
|
19 |
+
input_variables=['query']
|
20 |
+
)
|
21 |
+
return prompt
|
22 |
+
|
23 |
+
def load_model():
|
24 |
+
llm=CTransformers(
|
25 |
+
model='https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGML/blob/main/codellama-7b-instruct.ggmlv3.Q4_K_M.bin',
|
26 |
+
model_type='llama',
|
27 |
+
max_new_tokens=1096,
|
28 |
+
temperature=0.2,
|
29 |
+
repetition_penalty=1.13
|
30 |
+
|
31 |
+
)
|
32 |
+
|
33 |
+
return llm
|
34 |
+
|
35 |
+
def chain_pipeline():
|
36 |
+
llm=load_model()
|
37 |
+
qa_prompt=set_custom_prompt()
|
38 |
+
qa_chain=LLMChain(
|
39 |
+
prompt=qa_prompt,
|
40 |
+
llm=llm
|
41 |
+
)
|
42 |
+
return qa_chain
|
43 |
+
|
44 |
+
llmchain=chain_pipeline()
|
45 |
+
|
46 |
+
def bot(query):
|
47 |
+
llm_response=llmchain.run({'query':query})
|
48 |
+
return llm_response
|
49 |
+
|
50 |
+
with gr.Blocks(title="Can AI code ? ") as demo:
|
51 |
+
gr.Markdown('# Code LLAMA demo')
|
52 |
+
chatbot=gr.Chatbot([],elem_id='chatbot',height=700)
|
53 |
+
msg=gr.Textbox()
|
54 |
+
clear=gr.ClearButton([msg,chatbot])
|
55 |
+
|
56 |
+
|
57 |
+
def respond(message,chat_history):
|
58 |
+
bot_message=bot(message)
|
59 |
+
chat_history.append((message,bot_message))
|
60 |
+
time.sleep(2)
|
61 |
+
return "",chat_history
|
62 |
+
|
63 |
+
msg.submit(respond,[msg,chatbot],[msg,chatbot])
|
64 |
+
|
65 |
+
|
66 |
demo.launch()
|