File size: 5,736 Bytes
16998ad f0002f1 16998ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import re
import os
import gradio as gr
import json
from functools import cache
import google.generativeai as genai
try:
from dotenv import load_dotenv
load_dotenv()
except:
pass
generation_config = {
"temperature": 0.9, # Temperature of the sampling distribution
"top_p": 1, # Probability of sampling from the top p tokens
"top_k": 1, # Number of top tokens to sample from
"max_output_tokens": 2048,
}
safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_ONLY_HIGH"},
]
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
text_model = genai.GenerativeModel(
model_name="gemini-1.0-pro",
generation_config=generation_config,
safety_settings=safety_settings,
)
vision_model = genai.GenerativeModel(
"gemini-pro-vision",
generation_config=generation_config,
safety_settings=safety_settings,
)
@cache
def get_file(path: str) -> str:
with open(path) as f:
return f.read()
def fix_json(json_str: str) -> str:
template = get_file("templates/prompt_json_fix.txt")
prompt = template.format(json=json_str)
response = text_model.generate_content(prompt).text
return response.split("```json")[1].split("```")[0]
def get_json_content(response: str) -> dict:
print(response)
if "```json" not in response:
return []
raw_json = response.split("```json")[1].split("```")[0]
try:
return json.loads(raw_json)
except json.JSONDecodeError as e:
print(e)
new_json = fix_json(raw_json)
print(new_json)
return json.loads(new_json)
def review_text(text: str) -> list[dict]:
template = get_file("templates/prompt_v1.txt")
try:
response = text_model.generate_content(template.format(text=text)).text
except ValueError as e:
print(e)
raise ValueError(
f"Error while getting answer from the model, make sure the content isn't offensive or dangerous."
)
return get_json_content(response)
def review_image(image) -> list[dict]:
prompt = get_file("templates/prompt_image_v1.txt")
try:
response = vision_model.generate_content([prompt, image]).text
except ValueError as e:
print(e)
message = "Error while getting answer from the model, make sure the content isn't offensive or dangerous. Please try again or change the prompt."
gr.Error(message)
raise ValueError(message)
return response
def html_title(title: str) -> str:
return f"<h1>{title}</h1>"
def apply_review(text: str, review: list[dict]) -> str:
output = ""
review = sorted(review, key=lambda x: x["start_char"])
last_end = 0
for entity in review:
starts = [
m.start() + last_end
for m in re.finditer(entity["term"].lower(), text[last_end:].lower())
]
if len(starts) > 0:
start = starts[0]
end = start + len(entity["term"])
output += text[last_end:start]
output += get_file("templates/correction.html").format(
term=text[start:end], fix=entity["fix"], kind=entity["type"]
)
last_end = end
output += text[last_end:]
return f"<pre style='white-space: pre-wrap;'>{output}</pre>"
def review_table_summary(review: list[dict]) -> str:
table = "<table><tr><th>Term</th><th>Fix</th><th>Type</th><th>Reason</th></tr>"
for entity in review:
table += f"<tr><td>{entity['term']}</td><td>{entity['fix']}</td><td>{entity['type']}</td><td>{entity.get('reason', '-')}</td></tr>"
table += "</table>"
return table
def format_entities(text: str, review: list[dict]) -> list[dict]:
entities = []
for entity in review:
# Find all occurrences of the term in the text
starts = [m.start() for m in re.finditer(entity["term"], text)]
if len(starts) > 0:
entities.append(
{
"term": entity["term"],
"start": starts[0],
"end": starts[0] + len(entity["term"]),
"entity": entity["type"],
"fix": entity["fix"],
}
)
else:
print(f"Term '{entity['term']}' not found in the text: '{text}'")
return entities
def process_text(text):
review = review_text(text)
if len(review) == 0:
return html_title("No issues found in the text 🎉🎉🎉")
return (
html_title("Reviewed text")
+ apply_review(text, review)
+ html_title("Explanation")
+ review_table_summary(review)
)
def process_image(image):
print(image)
return review_image(image)
text_ui = gr.Interface(
fn=process_text,
inputs=["text"],
outputs=[gr.HTML(label="Revision")],
examples=[
"The whitelist is incomplete.",
"There's not enough manpower to deliver the project",
"This has never happened in the history of mankind!",
"El hombre desciende del mono.",
"Els homes són animals",
],
)
image_ui = gr.Interface(
fn=process_image,
inputs=gr.Image(sources=["upload", "clipboard"], type="pil"),
outputs=["markdown"],
examples=["static/images/CEOs.png", "static/images/meat_grid.png"],
)
with gr.Blocks() as demo:
gr.Markdown(get_file("static/intro.md"))
gr.TabbedInterface([text_ui, image_ui], ["Check texts", "Check images"])
if __name__ == "__main__":
demo.launch()
|