Jawad138 commited on
Commit
384fb80
·
verified ·
1 Parent(s): 8f5766a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import streamlit as st
2
  from streamlit_chat import message
3
  from langchain.chains import ConversationalRetrievalChain
4
- from langchain_community.embeddings import HuggingFaceEmbeddings
5
  from langchain.llms import Replicate
6
  from langchain.text_splitter import CharacterTextSplitter
7
  from langchain.vectorstores import FAISS
@@ -56,9 +56,8 @@ def display_chat_history(chain):
56
  def create_conversational_chain(vector_store):
57
  load_dotenv()
58
 
59
- replicate_api_token = os.getenv("REPLICATE_API_TOKEN")
60
- if not replicate_api_token:
61
- raise ValueError("Replicate API token is not set. Please set the REPLICATE_API_TOKEN environment variable.")
62
 
63
  llm = Replicate(
64
  streaming=True,
@@ -70,8 +69,8 @@ def create_conversational_chain(vector_store):
70
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
71
 
72
  chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
73
- retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
74
- memory=memory)
75
  return chain
76
 
77
  def main():
@@ -111,4 +110,4 @@ def main():
111
  display_chat_history(chain)
112
 
113
  if __name__ == "__main__":
114
- main()
 
1
  import streamlit as st
2
  from streamlit_chat import message
3
  from langchain.chains import ConversationalRetrievalChain
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
  from langchain.llms import Replicate
6
  from langchain.text_splitter import CharacterTextSplitter
7
  from langchain.vectorstores import FAISS
 
56
  def create_conversational_chain(vector_store):
57
  load_dotenv()
58
 
59
+ replicate_api_token = "r8_MgTUrfPJIluDoXUhG7JXuPAYr6PonOW4BJCj0"
60
+ os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
 
61
 
62
  llm = Replicate(
63
  streaming=True,
 
69
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
70
 
71
  chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
72
+ retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
73
+ memory=memory)
74
  return chain
75
 
76
  def main():
 
110
  display_chat_history(chain)
111
 
112
  if __name__ == "__main__":
113
+ main()