|
import gradio as gr |
|
import edge_tts |
|
import asyncio |
|
import tempfile |
|
import os |
|
from huggingface_hub import InferenceClient |
|
import re |
|
from streaming_stt_nemo import Model |
|
import torch |
|
import random |
|
from openai import OpenAI |
|
import subprocess |
|
|
|
default_lang = "en" |
|
|
|
engines = { default_lang: Model(default_lang) } |
|
|
|
def transcribe(audio): |
|
if audio is None: |
|
return "" |
|
lang = "en" |
|
model = engines[lang] |
|
text = model.stt_file(audio)[0] |
|
return text |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
def client_fn(model): |
|
if "Llama 3 8B Service" in model: |
|
return OpenAI( |
|
base_url="http://52.76.81.56:60002/v1", |
|
api_key="token-abc123" |
|
) |
|
elif "Llama" in model: |
|
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") |
|
elif "Mistral" in model: |
|
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") |
|
elif "Phi" in model: |
|
return InferenceClient("microsoft/Phi-3-mini-4k-instruct") |
|
elif "Mixtral" in model: |
|
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
else: |
|
return InferenceClient("microsoft/Phi-3-mini-4k-instruct") |
|
|
|
def randomize_seed_fn(seed: int) -> int: |
|
seed = random.randint(0, 999999) |
|
return seed |
|
|
|
system_instructions1 = """ |
|
[SYSTEM] You are OPTIMUS Prime a personal AI voice assistant, Created by Jaward. |
|
Keep conversation friendly, short, clear, and concise. |
|
Avoid unnecessary introductions and answer the user's questions directly. |
|
Respond in a normal, conversational manner while being friendly and helpful. |
|
Remember previous parts of the conversation and use that context in your responses. |
|
Your creator Jaward is an AI/ML Research Engineer at Linksoul AI. He is currently specializing in Artificial Intelligence (AI) research more specifically training and optimizing advance AI systems. He aspires to build not just human-like intelligence but AI Systems that augment human intelligence. He has contributed greatly to the opensource community with first-principles code implementations of AI/ML research papers. He did his first internship at Beijing Academy of Artificial Intelligence as an AI Researher where he contributed in cutting-edge AI research leading to him contributing to an insightful paper (AUTOAGENTS - A FRAMEWORK FOR AUTOMATIC AGENT GENERATION). The paper got accepted this year at IJCAI(International Joint Conference On AI). He is currently doing internship at LinkSoul AI - a small opensource AI Research startup in Beijing. |
|
[USER] |
|
""" |
|
|
|
conversation_history = [] |
|
|
|
def models(text, model="Llama 3B Service", seed=42): |
|
global conversation_history |
|
seed = int(randomize_seed_fn(seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
client = client_fn(model) |
|
|
|
if "Llama 3 8B Service" in model: |
|
messages = [ |
|
{"role": "system", "content": system_instructions1}, |
|
] + conversation_history + [ |
|
{"role": "user", "content": text} |
|
] |
|
completion = client.chat.completions.create( |
|
model="/data/shared/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/c4a54320a52ed5f88b7a2f84496903ea4ff07b45/", |
|
messages=messages |
|
) |
|
assistant_response = completion.choices[0].message.content |
|
|
|
|
|
conversation_history.append({"role": "user", "content": text}) |
|
conversation_history.append({"role": "assistant", "content": assistant_response}) |
|
|
|
|
|
if len(conversation_history) > 20: |
|
conversation_history = conversation_history[-20:] |
|
|
|
return assistant_response |
|
else: |
|
|
|
history_text = "\n".join([f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}" for msg in conversation_history]) |
|
formatted_prompt = f"{system_instructions1}\n\nConversation history:\n{history_text}\n\nUser: {text}\nOPTIMUS:" |
|
|
|
generate_kwargs = dict( |
|
max_new_tokens=300, |
|
seed=seed |
|
) |
|
stream = client.text_generation( |
|
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
if not response.token.text == "</s>": |
|
output += response.token.text |
|
|
|
|
|
conversation_history.append({"role": "user", "content": text}) |
|
conversation_history.append({"role": "assistant", "content": output}) |
|
|
|
|
|
if len(conversation_history) > 20: |
|
conversation_history = conversation_history[-20:] |
|
|
|
return output |
|
|
|
async def respond(audio, model, seed): |
|
if audio is None: |
|
return None |
|
user = transcribe(audio) |
|
if not user: |
|
return None |
|
reply = models(user, model, seed) |
|
communicate = edge_tts.Communicate(reply, voice="en-US-ChristopherNeural") |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
await communicate.save(tmp_path) |
|
return tmp_path |
|
|
|
|
|
LANGUAGE_CODES = { |
|
"English": "eng", |
|
"Spanish": "spa", |
|
"French": "fra", |
|
"German": "deu", |
|
"Italian": "ita", |
|
"Chinese": "cmn" |
|
} |
|
|
|
def translate_speech(audio_file, target_language): |
|
""" |
|
Translate input speech (audio file) to the specified target language. |
|
""" |
|
if audio_file is None: |
|
return None |
|
|
|
language_code = LANGUAGE_CODES[target_language] |
|
output_file = "translated_audio.wav" |
|
|
|
command = [ |
|
"expressivity_predict", |
|
audio_file, |
|
"--tgt_lang", language_code, |
|
"--model_name", "seamless_expressivity", |
|
"--vocoder_name", "vocoder_pretssel", |
|
"--gated-model-dir", "seamlessmodel", |
|
"--output_path", output_file |
|
] |
|
|
|
subprocess.run(command, check=True) |
|
|
|
if os.path.exists(output_file): |
|
print(f"File created successfully: {output_file}") |
|
return output_file |
|
else: |
|
print(f"File not found: {output_file}") |
|
return None |
|
|
|
def clear_history(): |
|
global conversation_history |
|
conversation_history = [] |
|
return None, None, None, None |
|
|
|
def voice_assistant_tab(): |
|
return "# <center><b>Hello, I am Optimus Prime your personal AI voice assistant</b></center>" |
|
|
|
def speech_translation_tab(): |
|
return "# <center><b>Hear how you sound in another language</b></center>" |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
description = gr.Markdown("# <center><b>Hello, I am Optimus Prime your personal AI voice assistant</b></center>") |
|
|
|
with gr.Tabs() as tabs: |
|
with gr.TabItem("Voice Assistant") as voice_assistant: |
|
select = gr.Dropdown([ |
|
'Llama 3 8B Service', |
|
'Mixtral 8x7B', |
|
'Llama 3 8B', |
|
'Mistral 7B v0.3', |
|
'Phi 3 mini', |
|
], |
|
value="Llama 3 8B Service", |
|
label="Model" |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=999999, |
|
step=1, |
|
value=0, |
|
visible=False |
|
) |
|
input = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False) |
|
output = gr.Audio(label="AI", type="filepath", |
|
interactive=False, |
|
autoplay=True, |
|
elem_classes="audio") |
|
|
|
gr.Interface( |
|
fn=respond, |
|
inputs=[input, select, seed], |
|
outputs=[output], |
|
live=True |
|
) |
|
|
|
with gr.TabItem("Speech Translation") as speech_translation: |
|
input_audio = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False) |
|
target_lang = gr.Dropdown( |
|
choices=list(LANGUAGE_CODES.keys()), |
|
value="Spanish", |
|
label="Target Language" |
|
) |
|
output_audio = gr.Audio(label="Translated Audio", |
|
interactive=False, |
|
autoplay=True, |
|
elem_classes="audio") |
|
|
|
gr.Interface( |
|
fn=translate_speech, |
|
inputs=[input_audio, target_lang], |
|
outputs=[output_audio], |
|
live=True |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
voice_assistant.select(fn=voice_assistant_tab, inputs=None, outputs=description) |
|
speech_translation.select(fn=speech_translation_tab, inputs=None, outputs=description) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=200).launch() |