Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,12 @@ import torch
|
|
10 |
import random
|
11 |
from openai import OpenAI
|
12 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
default_lang = "en"
|
15 |
|
@@ -112,18 +118,90 @@ def models(text, model="Llama 3 8B Service", seed=42):
|
|
112 |
|
113 |
return output
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
124 |
tmp_path = tmp_file.name
|
125 |
await communicate.save(tmp_path)
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Supported languages for seamless-expressive
|
129 |
LANGUAGE_CODES = {
|
@@ -198,17 +276,21 @@ with gr.Blocks(css="style.css") as demo:
|
|
198 |
value=0,
|
199 |
visible=False
|
200 |
)
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
autoplay=True,
|
205 |
-
elem_classes="audio")
|
206 |
|
207 |
-
|
208 |
-
fn=
|
209 |
-
inputs=[
|
210 |
-
outputs=[
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
)
|
213 |
|
214 |
with gr.TabItem("Speech Translation") as speech_translation:
|
@@ -230,14 +312,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
230 |
live=True
|
231 |
)
|
232 |
|
233 |
-
# clear_button = gr.Button("Clear")
|
234 |
-
# clear_button.click(
|
235 |
-
# fn=clear_history,
|
236 |
-
# inputs=[],
|
237 |
-
# outputs=[input, output, input_audio, output_audio],
|
238 |
-
# api_name="clear"
|
239 |
-
# )
|
240 |
-
|
241 |
voice_assistant.select(fn=voice_assistant_tab, inputs=None, outputs=description)
|
242 |
speech_translation.select(fn=speech_translation_tab, inputs=None, outputs=description)
|
243 |
|
|
|
10 |
import random
|
11 |
from openai import OpenAI
|
12 |
import subprocess
|
13 |
+
import threading
|
14 |
+
import queue
|
15 |
+
import sounddevice as sd
|
16 |
+
import numpy as np
|
17 |
+
import wave
|
18 |
+
import sys
|
19 |
|
20 |
default_lang = "en"
|
21 |
|
|
|
118 |
|
119 |
return output
|
120 |
|
121 |
+
# New global variables for audio processing
|
122 |
+
RATE = 16000
|
123 |
+
CHUNK = int(RATE / 10) # 100ms
|
124 |
+
audio_queue = queue.Queue()
|
125 |
+
is_listening = False
|
126 |
+
|
127 |
+
def audio_callback(indata, frames, time, status):
|
128 |
+
if status:
|
129 |
+
print(status, file=sys.stderr)
|
130 |
+
audio_queue.put(indata.copy())
|
131 |
+
|
132 |
+
def process_audio_stream(model, seed):
|
133 |
+
global is_listening
|
134 |
+
audio_buffer = []
|
135 |
+
silence_threshold = 0.01
|
136 |
+
silence_duration = 0
|
137 |
+
max_silence = 2 # seconds
|
138 |
+
|
139 |
+
while True:
|
140 |
+
if not is_listening:
|
141 |
+
audio_buffer.clear()
|
142 |
+
silence_duration = 0
|
143 |
+
audio_queue.queue.clear()
|
144 |
+
continue
|
145 |
+
|
146 |
+
try:
|
147 |
+
chunk = audio_queue.get(timeout=1)
|
148 |
+
audio_buffer.append(chunk)
|
149 |
+
|
150 |
+
# Check for silence
|
151 |
+
if np.abs(chunk).mean() < silence_threshold:
|
152 |
+
silence_duration += CHUNK / RATE
|
153 |
+
else:
|
154 |
+
silence_duration = 0
|
155 |
+
|
156 |
+
if silence_duration > max_silence:
|
157 |
+
# Process the buffered audio
|
158 |
+
audio_data = np.concatenate(audio_buffer)
|
159 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
160 |
+
tmp_path = tmp_file.name
|
161 |
+
with wave.open(tmp_path, 'wb') as wf:
|
162 |
+
wf.setnchannels(1)
|
163 |
+
wf.setsampwidth(2)
|
164 |
+
wf.setframerate(RATE)
|
165 |
+
wf.writeframes((audio_data * 32767).astype(np.int16).tobytes())
|
166 |
+
|
167 |
+
# Transcribe and process
|
168 |
+
user_input = transcribe(tmp_path)
|
169 |
+
if user_input:
|
170 |
+
is_listening = False
|
171 |
+
reply = models(user_input, model, seed)
|
172 |
+
asyncio.run(respond_and_play(reply))
|
173 |
+
is_listening = True
|
174 |
+
|
175 |
+
# Clear the buffer
|
176 |
+
audio_buffer.clear()
|
177 |
+
silence_duration = 0
|
178 |
+
|
179 |
+
except queue.Empty:
|
180 |
+
pass
|
181 |
+
|
182 |
+
async def respond_and_play(text):
|
183 |
+
communicate = edge_tts.Communicate(text, voice="en-US-ChristopherNeural")
|
184 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
185 |
tmp_path = tmp_file.name
|
186 |
await communicate.save(tmp_path)
|
187 |
+
|
188 |
+
# Play the audio
|
189 |
+
with wave.open(tmp_path, 'rb') as wf:
|
190 |
+
data = wf.readframes(wf.getnframes())
|
191 |
+
sd.play(np.frombuffer(data, dtype=np.int16), wf.getframerate())
|
192 |
+
sd.wait()
|
193 |
+
|
194 |
+
def start_listening(model, seed):
|
195 |
+
global is_listening
|
196 |
+
is_listening = True
|
197 |
+
threading.Thread(target=process_audio_stream, args=(model, seed), daemon=True).start()
|
198 |
+
with sd.InputStream(callback=audio_callback, channels=1, samplerate=RATE, blocksize=CHUNK):
|
199 |
+
while is_listening:
|
200 |
+
sd.sleep(100)
|
201 |
+
|
202 |
+
def stop_listening():
|
203 |
+
global is_listening
|
204 |
+
is_listening = False
|
205 |
|
206 |
# Supported languages for seamless-expressive
|
207 |
LANGUAGE_CODES = {
|
|
|
276 |
value=0,
|
277 |
visible=False
|
278 |
)
|
279 |
+
start_button = gr.Button("Start Listening")
|
280 |
+
stop_button = gr.Button("Stop Listening")
|
281 |
+
status = gr.Markdown("Status: Not listening")
|
|
|
|
|
282 |
|
283 |
+
start_button.click(
|
284 |
+
fn=lambda model, seed: start_listening(model, seed),
|
285 |
+
inputs=[select, seed],
|
286 |
+
outputs=[status],
|
287 |
+
_js="() => {document.getElementById('status').textContent = 'Status: Listening'}"
|
288 |
+
)
|
289 |
+
stop_button.click(
|
290 |
+
fn=stop_listening,
|
291 |
+
inputs=[],
|
292 |
+
outputs=[status],
|
293 |
+
_js="() => {document.getElementById('status').textContent = 'Status: Not listening'}"
|
294 |
)
|
295 |
|
296 |
with gr.TabItem("Speech Translation") as speech_translation:
|
|
|
312 |
live=True
|
313 |
)
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
voice_assistant.select(fn=voice_assistant_tab, inputs=None, outputs=description)
|
316 |
speech_translation.select(fn=speech_translation_tab, inputs=None, outputs=description)
|
317 |
|