LIN373N_Demo / app.py
Jay7478's picture
Update app.py
1228bd8
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# import nltk
# import math
# import torch
# model_name = "afnanmmir/t5-base-abstract-to-plain-language-1"
# # model_name = "afnanmmir/t5-base-axriv-to-abstract-3"
# max_input_length = 1024
# max_output_length = 256
# st.header("Generate summaries")
# st_model_load = st.text('Loading summary generator model...')
# # @st.cache(allow_output_mutation=True)
# @st.cache_data
# def load_model():
# print("Loading model...")
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# nltk.download('punkt')
# print("Model loaded!")
# return tokenizer, model
# tokenizer, model = load_model()
# st.success('Model loaded!')
# st_model_load.text("")
# with st.sidebar:
# # st.header("Model parameters")
# # if 'num_titles' not in st.session_state:
# # st.session_state.num_titles = 5
# # def on_change_num_titles():
# # st.session_state.num_titles = num_titles
# # num_titles = st.slider("Number of titles to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles)
# # if 'temperature' not in st.session_state:
# # st.session_state.temperature = 0.7
# # def on_change_temperatures():
# # st.session_state.temperature = temperature
# # temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=0.6, step=0.05, on_change=on_change_temperatures)
# # st.markdown("_High temperature means that results are more random_")
# if 'text' not in st.session_state:
# st.session_state.text = ""
# st_text_area = st.text_area('Text to generate the summary for', value=st.session_state.text, height=500)
# def generate_summary():
# st.session_state.text = st_text_area
# # tokenize text
# inputs = ["summarize: " + st_text_area]
# # print(inputs)
# inputs = tokenizer(inputs, return_tensors="pt", max_length=max_input_length, truncation=True)
# # print("Tokenized inputs: ")
# # print(inputs)
# outputs = model.generate(**inputs, do_sample=True, max_length=max_output_length, early_stopping=True, num_beams=8, length_penalty=2.0, no_repeat_ngram_size=2, min_length=64)
# # print("outputs", outputs)
# decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
# # print("Decoded_outputs", decoded_outputs)
# predicted_summaries = nltk.sent_tokenize(decoded_outputs.strip())
# # print("Predicted summaries", predicted_summaries)
# # decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
# # predicted_summaries = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs]
# st.session_state.summaries = predicted_summaries
# # generate title button
# st_generate_button = st.button('Generate summary', on_click=generate_summary)
# # title generation labels
# if 'summaries' not in st.session_state:
# st.session_state.summaries = []
# if len(st.session_state.summaries) > 0:
# # print("In summaries if")
# with st.container():
# st.subheader("Generated summaries")
# for summary in st.session_state.summaries:
# st.markdown("__" + summary + "__")
# -------------------------------
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
import math
import torch
model_name = "afnanmmir/t5-base-abstract-to-plain-language-1"
max_input_length = 1024
max_output_length = 256
min_output_length = 64
st.header("Generate summaries for articles")
st_model_load = st.text('Loading summary generator model...')
@st.cache(allow_output_mutation=True)
def load_model():
print("Loading model...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
nltk.download('punkt')
print("Model loaded!")
return tokenizer, model
tokenizer, model = load_model()
st.success('Model loaded!')
st_model_load.text("")
if 'text' not in st.session_state:
st.session_state.text = ""
st_text_area = st.text_area('Text to generate the summary for', value=st.session_state.text, height=500)
def generate_summary():
st.session_state.text = st_text_area
# tokenize text
inputs = ["summarize: " + st_text_area]
inputs = tokenizer(inputs, return_tensors="pt", max_length=max_input_length, truncation=True)
# compute predictions
outputs = model.generate(**inputs, do_sample=True, max_length=max_output_length, early_stopping=True, num_beams=8, length_penalty=2.0, no_repeat_ngram_size=2, min_length=min_output_length)
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
predicted_summaries = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs]
st.session_state.summaries = predicted_summaries
# generate summary button
st_generate_button = st.button('Generate summary', on_click=generate_summary)
# summary generation labels
if 'summaries' not in st.session_state:
st.session_state.summaries = []
if len(st.session_state.summaries) > 0:
with st.container():
st.subheader("Generated summaries")
for summary in st.session_state.summaries:
st.markdown("__" + summary + "__")