# import streamlit as st # from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # import nltk # import math # import torch # model_name = "afnanmmir/t5-base-abstract-to-plain-language-1" # # model_name = "afnanmmir/t5-base-axriv-to-abstract-3" # max_input_length = 1024 # max_output_length = 256 # st.header("Generate summaries") # st_model_load = st.text('Loading summary generator model...') # # @st.cache(allow_output_mutation=True) # @st.cache_data # def load_model(): # print("Loading model...") # tokenizer = AutoTokenizer.from_pretrained(model_name) # model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # nltk.download('punkt') # print("Model loaded!") # return tokenizer, model # tokenizer, model = load_model() # st.success('Model loaded!') # st_model_load.text("") # with st.sidebar: # # st.header("Model parameters") # # if 'num_titles' not in st.session_state: # # st.session_state.num_titles = 5 # # def on_change_num_titles(): # # st.session_state.num_titles = num_titles # # num_titles = st.slider("Number of titles to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles) # # if 'temperature' not in st.session_state: # # st.session_state.temperature = 0.7 # # def on_change_temperatures(): # # st.session_state.temperature = temperature # # temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=0.6, step=0.05, on_change=on_change_temperatures) # # st.markdown("_High temperature means that results are more random_") # if 'text' not in st.session_state: # st.session_state.text = "" # st_text_area = st.text_area('Text to generate the summary for', value=st.session_state.text, height=500) # def generate_summary(): # st.session_state.text = st_text_area # # tokenize text # inputs = ["summarize: " + st_text_area] # # print(inputs) # inputs = tokenizer(inputs, return_tensors="pt", max_length=max_input_length, truncation=True) # # print("Tokenized inputs: ") # # print(inputs) # outputs = model.generate(**inputs, do_sample=True, max_length=max_output_length, early_stopping=True, num_beams=8, length_penalty=2.0, no_repeat_ngram_size=2, min_length=64) # # print("outputs", outputs) # decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] # # print("Decoded_outputs", decoded_outputs) # predicted_summaries = nltk.sent_tokenize(decoded_outputs.strip()) # # print("Predicted summaries", predicted_summaries) # # decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) # # predicted_summaries = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs] # st.session_state.summaries = predicted_summaries # # generate title button # st_generate_button = st.button('Generate summary', on_click=generate_summary) # # title generation labels # if 'summaries' not in st.session_state: # st.session_state.summaries = [] # if len(st.session_state.summaries) > 0: # # print("In summaries if") # with st.container(): # st.subheader("Generated summaries") # for summary in st.session_state.summaries: # st.markdown("__" + summary + "__") # ------------------------------- import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import nltk import math import torch model_name = "afnanmmir/t5-base-abstract-to-plain-language-1" max_input_length = 1024 max_output_length = 256 min_output_length = 64 st.header("Generate summaries for articles") st_model_load = st.text('Loading summary generator model...') @st.cache(allow_output_mutation=True) def load_model(): print("Loading model...") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) nltk.download('punkt') print("Model loaded!") return tokenizer, model tokenizer, model = load_model() st.success('Model loaded!') st_model_load.text("") if 'text' not in st.session_state: st.session_state.text = "" st_text_area = st.text_area('Text to generate the summary for', value=st.session_state.text, height=500) def generate_summary(): st.session_state.text = st_text_area # tokenize text inputs = ["summarize: " + st_text_area] inputs = tokenizer(inputs, return_tensors="pt", max_length=max_input_length, truncation=True) # compute predictions outputs = model.generate(**inputs, do_sample=True, max_length=max_output_length, early_stopping=True, num_beams=8, length_penalty=2.0, no_repeat_ngram_size=2, min_length=min_output_length) decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) predicted_summaries = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs] st.session_state.summaries = predicted_summaries # generate summary button st_generate_button = st.button('Generate summary', on_click=generate_summary) # summary generation labels if 'summaries' not in st.session_state: st.session_state.summaries = [] if len(st.session_state.summaries) > 0: with st.container(): st.subheader("Generated summaries") for summary in st.session_state.summaries: st.markdown("__" + summary + "__")