Spaces:
Build error
Build error
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +3 -9
- cache/1709864908_36857950.png +0 -0
- cache/1709866309_18671109.png +0 -0
- cache/1709866575_76532584.png +3 -0
- cache/1709867129_81267182.png +0 -0
- cache/1709867218_99613356.png +0 -0
- websockets_api_v1_3_0229_debug_beta.py +134 -0
- workflow_api_anime_0306.json +194 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cache/1709866575_76532584.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: faceID
|
3 |
+
app_file: websockets_api_v1_3_0229_debug_beta.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 3.41.2
|
|
|
|
|
6 |
---
|
|
|
|
cache/1709864908_36857950.png
ADDED
![]() |
cache/1709866309_18671109.png
ADDED
![]() |
cache/1709866575_76532584.png
ADDED
![]() |
Git LFS Details
|
cache/1709867129_81267182.png
ADDED
![]() |
cache/1709867218_99613356.png
ADDED
![]() |
websockets_api_v1_3_0229_debug_beta.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import websocket
|
4 |
+
import uuid
|
5 |
+
import json
|
6 |
+
import urllib.request
|
7 |
+
import urllib.parse
|
8 |
+
import gradio as gr
|
9 |
+
from glob import glob
|
10 |
+
import requests
|
11 |
+
from pathlib import Path
|
12 |
+
import base64
|
13 |
+
from PIL import Image
|
14 |
+
import time
|
15 |
+
import io
|
16 |
+
|
17 |
+
server_address = "127.0.0.1:8188"
|
18 |
+
client_id = str(uuid.uuid4())
|
19 |
+
|
20 |
+
|
21 |
+
def queue_prompt(prompt):
|
22 |
+
p = {"prompt": prompt, "client_id": client_id}
|
23 |
+
data = json.dumps(p).encode('utf-8')
|
24 |
+
req = urllib.request.Request("http://{}/prompt".format(server_address), data=data)
|
25 |
+
return json.loads(urllib.request.urlopen(req).read())
|
26 |
+
|
27 |
+
def get_image(filename, subfolder, folder_type):
|
28 |
+
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
29 |
+
url_values = urllib.parse.urlencode(data)
|
30 |
+
with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response:
|
31 |
+
return response.read()
|
32 |
+
|
33 |
+
def get_history(prompt_id):
|
34 |
+
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
|
35 |
+
return json.loads(response.read())
|
36 |
+
|
37 |
+
|
38 |
+
def get_images(ws, prompt):
|
39 |
+
prompt_id = queue_prompt(prompt)['prompt_id']
|
40 |
+
output_images = {}
|
41 |
+
while True:
|
42 |
+
out = ws.recv()
|
43 |
+
if isinstance(out, str):
|
44 |
+
message = json.loads(out)
|
45 |
+
if message['type'] == 'executing':
|
46 |
+
data = message['data']
|
47 |
+
if data['node'] is None and data['prompt_id'] == prompt_id:
|
48 |
+
break #Execution is done
|
49 |
+
else:
|
50 |
+
continue #previews are binary data
|
51 |
+
|
52 |
+
history = get_history(prompt_id)[prompt_id]
|
53 |
+
for o in history['outputs']:
|
54 |
+
for node_id in history['outputs']:
|
55 |
+
node_output = history['outputs'][node_id]
|
56 |
+
if 'images' in node_output:
|
57 |
+
images_output = []
|
58 |
+
for image in node_output['images']:
|
59 |
+
image_data = get_image(image['filename'], image['subfolder'], image['type'])
|
60 |
+
images_output.append(image_data)
|
61 |
+
output_images[node_id] = images_output
|
62 |
+
|
63 |
+
return output_images
|
64 |
+
|
65 |
+
def detect(image):
|
66 |
+
img = Path(image).read_bytes()
|
67 |
+
rsp = requests.post(f'http://cv.bytedance.net/aipet_head_det/run/predict', json={
|
68 |
+
'data': ['data:image/png;base64,'+
|
69 |
+
base64.b64encode(img).decode('utf-8'),
|
70 |
+
]
|
71 |
+
})
|
72 |
+
|
73 |
+
return rsp.json()['data'][1]
|
74 |
+
|
75 |
+
def clip_save(img_in,coords,path="img.png"):
|
76 |
+
|
77 |
+
img = Image.open(img_in)
|
78 |
+
img2 = img.crop((int(coords[0]), int(coords[1]), int(coords[2]), int(coords[3])))
|
79 |
+
img2.save(path)
|
80 |
+
|
81 |
+
|
82 |
+
def load_template(img_in,seed):
|
83 |
+
seed = int(seed)
|
84 |
+
with open(workflow_base,encoding='utf-8') as file:
|
85 |
+
template = json.load(file)
|
86 |
+
template["14"]["inputs"]["image"] = img_in
|
87 |
+
# template["7"]["inputs"]["text"] = animal + templates[style]
|
88 |
+
template["3"]["inputs"]["seed"] = seed if seed > 0 else random.randint(1,1e8)
|
89 |
+
# template["31"]["inputs"]["seed"] = seed if seed > 0 else random.randint(1,1e8)
|
90 |
+
# template["30"]["inputs"]["lora_name"] = loras[style]
|
91 |
+
# template["30"]["inputs"]["strength_model"] = w_lora
|
92 |
+
# template["30"]["inputs"]["strength_clip"] = w_lora
|
93 |
+
# if debug:
|
94 |
+
# print(template["6"]["inputs"]["image"],template["7"]["inputs"]["text"],template["9"]["inputs"]["seed"],template["30"]["inputs"]["lora_name"],template["30"]["inputs"]["strength_model"],template["30"]["inputs"]["strength_clip"])
|
95 |
+
return template
|
96 |
+
|
97 |
+
def generate(img_in,seed):
|
98 |
+
seed = int(seed)
|
99 |
+
|
100 |
+
template = load_template(img_in,seed)
|
101 |
+
ws = websocket.WebSocket()
|
102 |
+
ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id))
|
103 |
+
images = get_images(ws, template)
|
104 |
+
|
105 |
+
for node_id in images:
|
106 |
+
for image_data in images[node_id]:
|
107 |
+
image = Image.open(io.BytesIO(image_data))
|
108 |
+
path_out = dir_cache+"/"+str(time.time()).split('.')[0]+"_"+str(template["3"]["inputs"]["seed"])+".png"
|
109 |
+
image.save(path_out)
|
110 |
+
|
111 |
+
return image
|
112 |
+
|
113 |
+
if __name__ == '__main__':
|
114 |
+
|
115 |
+
|
116 |
+
workflow_base = "D:/faceID/workflow_api_anime_0306.json"
|
117 |
+
dir_cache = "D:/faceID/cache"
|
118 |
+
seed = -1
|
119 |
+
# debug = True
|
120 |
+
demo = gr.Interface(
|
121 |
+
|
122 |
+
fn = generate,
|
123 |
+
inputs = [
|
124 |
+
gr.Image(type='filepath'),
|
125 |
+
# gr.Textbox(label="自定义品种",value="", info="自定义品种,内部调试使用"),
|
126 |
+
# gr.Radio(["发财麻将","东北大花","情人玫瑰","天使丘比特","爱心丘比特","美式证件照","新年工笔画","新年唐装","新年糖葫芦","宠物礼盒","生日快乐","雪地工笔画","破壳纪念","爱读书的学霸","米其林大厨","疯狂赛车手","工笔画","圣诞树","圣诞雪人","圣诞老人",], label="风格", info="更多风格规划中,敬请期待~"),
|
127 |
+
# gr.Slider(0, 1, value=0.5,step=0.05,label='风格化程度',info='推荐值:低风格化0.3, 中风格化0.5, 高风格化0.7'),
|
128 |
+
gr.Textbox(label="随机种子",value=-1, info="-1为随机种子,大于0时为自定义种子")
|
129 |
+
],
|
130 |
+
outputs = ["image"]
|
131 |
+
)
|
132 |
+
|
133 |
+
demo.queue(max_size=2)
|
134 |
+
demo.launch(share=True)
|
workflow_api_anime_0306.json
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"3": {
|
3 |
+
"inputs": {
|
4 |
+
"seed": 0,
|
5 |
+
"steps": 20,
|
6 |
+
"cfg": 4,
|
7 |
+
"sampler_name": "dpmpp_2m_sde",
|
8 |
+
"scheduler": "karras",
|
9 |
+
"denoise": 1,
|
10 |
+
"model": [
|
11 |
+
"10",
|
12 |
+
0
|
13 |
+
],
|
14 |
+
"positive": [
|
15 |
+
"6",
|
16 |
+
0
|
17 |
+
],
|
18 |
+
"negative": [
|
19 |
+
"7",
|
20 |
+
0
|
21 |
+
],
|
22 |
+
"latent_image": [
|
23 |
+
"5",
|
24 |
+
0
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"class_type": "KSampler",
|
28 |
+
"_meta": {
|
29 |
+
"title": "KSampler"
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"4": {
|
33 |
+
"inputs": {
|
34 |
+
"ckpt_name": "ghostxl_v10BakedVAE.safetensors"
|
35 |
+
},
|
36 |
+
"class_type": "CheckpointLoaderSimple",
|
37 |
+
"_meta": {
|
38 |
+
"title": "Load Checkpoint"
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"5": {
|
42 |
+
"inputs": {
|
43 |
+
"width": 768,
|
44 |
+
"height": 1024,
|
45 |
+
"batch_size": 1
|
46 |
+
},
|
47 |
+
"class_type": "EmptyLatentImage",
|
48 |
+
"_meta": {
|
49 |
+
"title": "Empty Latent Image"
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"inputs": {
|
54 |
+
"text": "masterpiece, 8K, best quality, clean background",
|
55 |
+
"clip": [
|
56 |
+
"4",
|
57 |
+
1
|
58 |
+
]
|
59 |
+
},
|
60 |
+
"class_type": "CLIPTextEncode",
|
61 |
+
"_meta": {
|
62 |
+
"title": "CLIP Text Encode (Prompt)"
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"7": {
|
66 |
+
"inputs": {
|
67 |
+
"text": "nsfw,blurry, low quality, distorted, photo, frame, naked, horror,embedding:EasyNegative",
|
68 |
+
"clip": [
|
69 |
+
"4",
|
70 |
+
1
|
71 |
+
]
|
72 |
+
},
|
73 |
+
"class_type": "CLIPTextEncode",
|
74 |
+
"_meta": {
|
75 |
+
"title": "CLIP Text Encode (Prompt)"
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"8": {
|
79 |
+
"inputs": {
|
80 |
+
"samples": [
|
81 |
+
"3",
|
82 |
+
0
|
83 |
+
],
|
84 |
+
"vae": [
|
85 |
+
"4",
|
86 |
+
2
|
87 |
+
]
|
88 |
+
},
|
89 |
+
"class_type": "VAEDecode",
|
90 |
+
"_meta": {
|
91 |
+
"title": "VAE Decode"
|
92 |
+
}
|
93 |
+
},
|
94 |
+
"9": {
|
95 |
+
"inputs": {
|
96 |
+
"filename_prefix": "ComfyUI",
|
97 |
+
"images": [
|
98 |
+
"8",
|
99 |
+
0
|
100 |
+
]
|
101 |
+
},
|
102 |
+
"class_type": "SaveImage",
|
103 |
+
"_meta": {
|
104 |
+
"title": "Save Image"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"10": {
|
108 |
+
"inputs": {
|
109 |
+
"weight": 1,
|
110 |
+
"noise": 0,
|
111 |
+
"weight_type": "original",
|
112 |
+
"start_at": 0,
|
113 |
+
"end_at": 1,
|
114 |
+
"faceid_v2": true,
|
115 |
+
"weight_v2": 1,
|
116 |
+
"unfold_batch": false,
|
117 |
+
"ipadapter": [
|
118 |
+
"11",
|
119 |
+
0
|
120 |
+
],
|
121 |
+
"clip_vision": [
|
122 |
+
"41",
|
123 |
+
0
|
124 |
+
],
|
125 |
+
"insightface": [
|
126 |
+
"13",
|
127 |
+
0
|
128 |
+
],
|
129 |
+
"image": [
|
130 |
+
"14",
|
131 |
+
0
|
132 |
+
],
|
133 |
+
"model": [
|
134 |
+
"39",
|
135 |
+
0
|
136 |
+
]
|
137 |
+
},
|
138 |
+
"class_type": "IPAdapterApplyFaceID",
|
139 |
+
"_meta": {
|
140 |
+
"title": "Apply IPAdapter FaceID"
|
141 |
+
}
|
142 |
+
},
|
143 |
+
"11": {
|
144 |
+
"inputs": {
|
145 |
+
"ipadapter_file": "ip-adapter-faceid-plusv2_sdxl.bin"
|
146 |
+
},
|
147 |
+
"class_type": "IPAdapterModelLoader",
|
148 |
+
"_meta": {
|
149 |
+
"title": "Load IPAdapter Model"
|
150 |
+
}
|
151 |
+
},
|
152 |
+
"13": {
|
153 |
+
"inputs": {
|
154 |
+
"provider": "CUDA"
|
155 |
+
},
|
156 |
+
"class_type": "InsightFaceLoader",
|
157 |
+
"_meta": {
|
158 |
+
"title": "Load InsightFace"
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"14": {
|
162 |
+
"inputs": {
|
163 |
+
"image": "comfyworkflows_f0942efd-fb40-422b-8cd4-cbaa39529fab (3).png",
|
164 |
+
"upload": "image"
|
165 |
+
},
|
166 |
+
"class_type": "LoadImage",
|
167 |
+
"_meta": {
|
168 |
+
"title": "Load Image"
|
169 |
+
}
|
170 |
+
},
|
171 |
+
"39": {
|
172 |
+
"inputs": {
|
173 |
+
"lora_name": "ip-adapter-faceid-plusv2_sdxl_lora.safetensors",
|
174 |
+
"strength_model": 1,
|
175 |
+
"model": [
|
176 |
+
"4",
|
177 |
+
0
|
178 |
+
]
|
179 |
+
},
|
180 |
+
"class_type": "LoraLoaderModelOnly",
|
181 |
+
"_meta": {
|
182 |
+
"title": "LoraLoaderModelOnly"
|
183 |
+
}
|
184 |
+
},
|
185 |
+
"41": {
|
186 |
+
"inputs": {
|
187 |
+
"clip_name": "ipadpter1.5.safetensors"
|
188 |
+
},
|
189 |
+
"class_type": "CLIPVisionLoader",
|
190 |
+
"_meta": {
|
191 |
+
"title": "Load CLIP Vision"
|
192 |
+
}
|
193 |
+
}
|
194 |
+
}
|