Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,63 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
),
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
framerate = 44100
|
35 |
-
nchannels = 1
|
36 |
-
|
37 |
-
while True:
|
38 |
-
try:
|
39 |
-
audio_frames = webrtc_ctx.audio_receiver.get_frames(timeout=1)
|
40 |
-
for frame in audio_frames:
|
41 |
-
sound_chunk = np.frombuffer(frame.to_ndarray(), dtype=np.int16)
|
42 |
-
frames.append(sound_chunk.tobytes())
|
43 |
-
except av.error.BlockingIOError:
|
44 |
-
break
|
45 |
-
|
46 |
-
filename = "recorded_audio.wav"
|
47 |
-
save_audio(frames, filename, sample_width, framerate, nchannels)
|
48 |
-
st.audio(filename, format='audio/wav')
|
49 |
-
|
50 |
-
# Upload audio
|
51 |
-
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
|
52 |
-
|
53 |
-
if uploaded_file is not None:
|
54 |
-
st.audio(uploaded_file, format='audio/wav')
|
55 |
-
file_details = {"filename": uploaded_file.name, "filetype": uploaded_file.type,
|
56 |
-
"filesize": uploaded_file.size}
|
57 |
-
st.write(file_details)
|
58 |
-
with open(os.path.join("uploads", uploaded_file.name), "wb") as f:
|
59 |
-
f.write(uploaded_file.getbuffer())
|
60 |
-
st.success("File uploaded successfully")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
+
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
+
|
42 |
+
"""
|
43 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
+
"""
|
45 |
+
demo = gr.ChatInterface(
|
46 |
+
respond,
|
47 |
+
additional_inputs=[
|
48 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
+
gr.Slider(
|
52 |
+
minimum=0.1,
|
53 |
+
maximum=1.0,
|
54 |
+
value=0.95,
|
55 |
+
step=0.05,
|
56 |
+
label="Top-p (nucleus sampling)",
|
57 |
),
|
58 |
+
],
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|