File size: 4,887 Bytes
496bce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3de15ee
496bce6
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import streamlit as st
import os
import time
import numpy as np
import pandas as pd

def add_custom_css():
    st.markdown("""
    <style>
    .container {
        text-align: center;
        background-color: #f0f0f0;
        padding: 20px;
    }
    .big-font {
        font-size: 50px;
        color: #4CAF50;
    }
    .progress-bar {
        margin-top: 20px;
    }
    </style>
    """, unsafe_allow_html=True)

if 'packages_installed' not in st.session_state:
    st.info("Installing required packages...")
    os.system("pip install -U sentence-transformers")
    os.system("pip install pinecone-client")
    st.session_state['packages_installed'] = True

    from sentence_transformers import SentenceTransformer
    from pinecone import Pinecone, ServerlessSpec, PodSpec

if 'pc' not in st.session_state:
    use_serverless = False
    # Configure Pinecone client
    api_key = os.environ.get('PINECONE_API_KEY', '28b0fd5a-fdfb-422d-9a44-c0ec09a25074')
    environment = os.environ.get('PINECONE_ENVIRONMENT', 'gcp-starter')
    st.session_state['pc'] = Pinecone(api_key=api_key)

    if use_serverless:
        spec = ServerlessSpec(cloud='gcp', region='asia-southeast1-gcp')
    else:
        spec = PodSpec(environment=environment)
      
    if 'model' not in st.session_state:
      st.session_state['model'] = SentenceTransformer('intfloat/e5-small')

index_name = 'dataset'

if index_name not in st.session_state.pc.list_indexes().names():
  dimensions = 384
  st.session_state.pc.create_index(
            name=index_name,
            dimension=dimensions,
            metric='cosine',
            spec=spec
        )
    # Wait until index is ready
  while not st.session_state.pc.describe_index(index_name).status['ready']:
      time.sleep(1)
    
if 'index' not in st.session_state:
  st.session_state['index'] = st.session_state.pc.Index(index_name)


# Function to process data and insert into Pinecone index
def process_data(data, namespace):
    input_texts = data['Query']
    
    progress_bar = st.progress(0)
    total_chunks = len(data) // 1000 + 1

    for chunk_start in range(0, len(data), 1000):
        chunk_end = min(chunk_start + 1000, len(data))
        chunk = data.iloc[chunk_start:chunk_end]
        
        # Generate embeddings for the current chunk
        chunk_embeddings = [st.session_state.model.encode(query, normalize_embeddings=True) for query in chunk['Query']]
        chunk['embedding'] = chunk_embeddings
        
        # Upsert embeddings
        st.session_state.index.upsert(vectors=zip(chunk['id'], chunk['embedding']), namespace=namespace)
        
        # Update progress bar
        progress = (chunk_end / len(data)) * 100
        progress_bar.progress(int(progress))



def load_and_process_data(file):
    data = pd.read_csv(file)
    data['id'] = data.index.astype(str)
    namespace = file.name[:15]  # Use first 15 characters of file name as namespace
    if 'embeddings_done' not in st.session_state:
        process_data(data, namespace)
        st.session_state['embeddings_done'] = True
    return data, namespace

def main():
    add_custom_css()

    st.markdown("""
    <div class='container'>
        <h1 class='big-font'>Semantic Search Engine</h1>
    </div>
    """, unsafe_allow_html=True)
    
    # Use session state to retain information across interactions
    if 'namespace' not in st.session_state:
        st.session_state.namespace = None
    if 'df' not in st.session_state:
        st.session_state.df = None

    uploaded_file = st.file_uploader("Upload dataset (CSV format)", type=["csv"])
    
    if uploaded_file is not None:
        filename = uploaded_file.name
        namespace = filename.split('.')[0]  
        st.info("Dataset Processing Started...")
        st.session_state.df, st.session_state.namespace = load_and_process_data(uploaded_file)
        st.info("Dataset Processing Completed...")

    if st.session_state.namespace:
        query = st.text_input("Enter your query about the data (or type 'exit' to quit):")
        
        if query.lower() != 'exit':
            vec = st.session_state.model.encode(query)
            result = None
            result = st.session_state.index.query(
                namespace=st.session_state.namespace,
                vector=vec.tolist(),
                top_k=5,
                include_values=False
            )
            
            st.subheader("Query Results:")
            if result is not None:
                id = result['matches'][0]['id']
                data = st.session_state.df
                answer = data[data['id'] == id]['Answer'].values[0]
                st.write(answer)
            
        if st.button("Delete Stored Data"):
            st.session_state.index.delete(deleteAll=True, namespace =st.session_state.namespace)
            st.stop()
            
if __name__ == "__main__":
    main()