Spam_classifier / app.py
Jayesh13's picture
Update app.py
10371fc
raw
history blame
828 Bytes
import streamlit as st
import pickle
import numpy as np
import pandas as pd
import nltk
import re
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
model = pickle.load(open('spam_model.sav','rb'))
st.title('Spam classifier')
input = st.text_area('Enter sms here')
ps = PorterStemmer()
review = re.sub('[^a-zA-Z]', ' ', input) # to remove punctuation
review = review.lower()
review = review.split()
review = [ps.stem(word) for word in review if not word in stopwords.words('english')]
review = ' '.join(review)
tf = TfidfVectorizer()
X = tf.fit_transform(review).toarray()
if input:
output = model.predict(X)
st.json(output)