Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- APP.py +108 -0
- tox_model.pkl +3 -0
- train.csv.zip +3 -0
APP.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import re
|
6 |
+
import tensorflow
|
7 |
+
from tensorflow import keras
|
8 |
+
from keras.preprocessing import text,sequence,utils
|
9 |
+
import html
|
10 |
+
import string
|
11 |
+
import nltk
|
12 |
+
from nltk.stem.porter import PorterStemmer
|
13 |
+
from nltk.stem import WordNetLemmatizer
|
14 |
+
from nltk.tokenize import word_tokenize
|
15 |
+
from nltk.corpus import stopwords
|
16 |
+
stop_words = stopwords.words('english')
|
17 |
+
from tensorflow.keras.preprocessing.text import text_to_word_sequence
|
18 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
19 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
20 |
+
from tensorflow.keras import models
|
21 |
+
from tensorflow.keras import layers
|
22 |
+
from tensorflow.keras import losses
|
23 |
+
from tensorflow.keras import metrics
|
24 |
+
from tensorflow.keras import optimizers
|
25 |
+
from tensorflow.keras.utils import plot_model
|
26 |
+
|
27 |
+
def remove_special_chars(text):
|
28 |
+
re1 = re.compile(r' +')
|
29 |
+
x1 = text.lower().replace('#39;', "'").replace('amp;', '&').replace('#146;', "'").replace(
|
30 |
+
'nbsp;', ' ').replace('#36;', '$').replace('\\n', "\n").replace('quot;', "'").replace(
|
31 |
+
'<br />', "\n").replace('\\"', '"').replace('<unk>', 'u_n').replace(' @.@ ', '.').replace(
|
32 |
+
' @-@ ', '-').replace('\\', ' \\ ')
|
33 |
+
return re1.sub(' ', html.unescape(x1))
|
34 |
+
|
35 |
+
def to_lowercase(text):
|
36 |
+
return text.lower()
|
37 |
+
|
38 |
+
def remove_punctuation(text):
|
39 |
+
"""Remove punctuation from list of tokenized words"""
|
40 |
+
translator = str.maketrans('', '', string.punctuation)
|
41 |
+
return text.translate(translator)
|
42 |
+
|
43 |
+
def replace_numbers(text):
|
44 |
+
"""Replace all interger occurrences in list of tokenized words with textual representation"""
|
45 |
+
return re.sub(r'\d+', '', text)
|
46 |
+
|
47 |
+
def remove_whitespaces(text):
|
48 |
+
return text.strip()
|
49 |
+
|
50 |
+
def remove_stopwords(words, stop_words):
|
51 |
+
return [word for word in words if word not in stop_words]
|
52 |
+
|
53 |
+
def stem_words(words):
|
54 |
+
"""Stem words in text"""
|
55 |
+
stemmer = PorterStemmer()
|
56 |
+
return [stemmer.stem(word) for word in words]
|
57 |
+
|
58 |
+
def lemmatize_words(words):
|
59 |
+
"""Lemmatize words in text"""
|
60 |
+
|
61 |
+
lemmatizer = WordNetLemmatizer()
|
62 |
+
return [lemmatizer.lemmatize(word) for word in words]
|
63 |
+
|
64 |
+
def lemmatize_verbs(words):
|
65 |
+
"""Lemmatize verbs in text"""
|
66 |
+
|
67 |
+
lemmatizer = WordNetLemmatizer()
|
68 |
+
return ' '.join([lemmatizer.lemmatize(word, pos='v') for word in words])
|
69 |
+
|
70 |
+
def text2words(text):
|
71 |
+
return word_tokenize(text)
|
72 |
+
|
73 |
+
def clean_text( text):
|
74 |
+
text = remove_special_chars(text)
|
75 |
+
text = remove_punctuation(text)
|
76 |
+
text = to_lowercase(text)
|
77 |
+
text = replace_numbers(text)
|
78 |
+
words = text2words(text)
|
79 |
+
words = remove_stopwords(words, stop_words)
|
80 |
+
#words = stem_words(words)# Either stem ovocar lemmatize
|
81 |
+
words = lemmatize_words(words)
|
82 |
+
words = lemmatize_verbs(words)
|
83 |
+
|
84 |
+
return ''.join(words)
|
85 |
+
|
86 |
+
df = pd.read_csv('C:\Users\HP\Documents\Model_deployment\train.csv.zip')
|
87 |
+
df['comment_text'] = df['comment_text'].apply(lambda x: clean_text(x))
|
88 |
+
|
89 |
+
model = pickle.load(open('C:\Users\HP\Documents\Model_deployment\tox_model.pkl','rb'))
|
90 |
+
|
91 |
+
st.title('Toxic comment classification')
|
92 |
+
input = st.text_area('Enter your comment')
|
93 |
+
|
94 |
+
input = input.apply(lambda x: clean_text(x))
|
95 |
+
tok = Tokenizer(num_words=1000, oov_token='UNK')
|
96 |
+
tok.fit_on_texts(df['comment_text'] )
|
97 |
+
|
98 |
+
x_test = tok.texts_to_sequence(input)
|
99 |
+
input_text = pad_sequences(x_test,
|
100 |
+
maxlen=50,
|
101 |
+
truncating='post',
|
102 |
+
padding='post'
|
103 |
+
)
|
104 |
+
if input:
|
105 |
+
out = model.predict(input_text)
|
106 |
+
st.json(out)
|
107 |
+
|
108 |
+
|
tox_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e679960774a127bdcb1670399b77ad59fa944fed043249c20b1c20ee10ae66a2
|
3 |
+
size 113453577
|
train.csv.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59046551e4723d37993933a629d9de4bef9dd5b3adb9ed6b41ac7932ffae2eb1
|
3 |
+
size 27619914
|