Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%capture
|
2 |
+
# # Run this cell in your local environment to install necessary packages
|
3 |
+
# # Added chromadb, removed scikit-learn (numpy might still be needed by other libs)
|
4 |
+
# !pip install gradio langchain langchain-community sentence-transformers ctransformers torch accelerate bitsandbytes chromadb transformers[sentencepiece]
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
from langchain_community.vectorstores import Chroma # ADDED
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain_community.llms import CTransformers
|
10 |
+
from langchain.schema import Document
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
import json
|
13 |
+
import os
|
14 |
+
# REMOVED: import numpy as np
|
15 |
+
import re
|
16 |
+
# REMOVED: from sklearn.metrics.pairwise import cosine_similarity
|
17 |
+
import chromadb # ADDED for client check
|
18 |
+
from typing import List, Dict, Any, Optional
|
19 |
+
|
20 |
+
# --- Load Structured Resume Data ---
|
21 |
+
resume_filename = "resume_corrected.json" # Using the revamped JSON
|
22 |
+
resume_data = {}
|
23 |
+
try:
|
24 |
+
with open(resume_filename, 'r', encoding='utf-8') as f:
|
25 |
+
resume_data = json.load(f)
|
26 |
+
print(f"Loaded structured resume data from {resume_filename}")
|
27 |
+
if not isinstance(resume_data, dict):
|
28 |
+
print(f"Error: Content of {resume_filename} is not a dictionary.")
|
29 |
+
resume_data = {}
|
30 |
+
except FileNotFoundError:
|
31 |
+
print(f"Error: Resume data file '{resume_filename}' not found.")
|
32 |
+
print("Ensure the revamped JSON file is present.")
|
33 |
+
exit()
|
34 |
+
except json.JSONDecodeError as e:
|
35 |
+
print(f"Error decoding JSON from {resume_filename}: {e}")
|
36 |
+
exit()
|
37 |
+
except Exception as e:
|
38 |
+
print(f"An unexpected error occurred loading resume data: {e}")
|
39 |
+
exit()
|
40 |
+
|
41 |
+
if not resume_data:
|
42 |
+
print("Error: No resume data loaded. Exiting.")
|
43 |
+
exit()
|
44 |
+
|
45 |
+
# --- Function to Sanitize Metadata ---
|
46 |
+
# --- Helper Function to Sanitize Metadata ---
|
47 |
+
def sanitize_metadata(metadata_dict: Dict[str, Any]) -> Dict[str, Any]:
|
48 |
+
"""Ensures metadata values are compatible types for ChromaDB."""
|
49 |
+
sanitized = {}
|
50 |
+
if not isinstance(metadata_dict, dict):
|
51 |
+
return {} # Return empty if input is not a dict
|
52 |
+
for k, v in metadata_dict.items():
|
53 |
+
# Ensure key is string
|
54 |
+
key_str = str(k)
|
55 |
+
if isinstance(v, (str, int, float, bool)):
|
56 |
+
sanitized[key_str] = v
|
57 |
+
elif isinstance(v, (list, set)): # Convert lists/sets to string
|
58 |
+
sanitized[key_str] = "; ".join(map(str, v))
|
59 |
+
elif v is None:
|
60 |
+
sanitized[key_str] = "N/A" # Or ""
|
61 |
+
else:
|
62 |
+
sanitized[key_str] = str(v) # Convert other types to string
|
63 |
+
return sanitized
|
64 |
+
|
65 |
+
|
66 |
+
# --- Create Granular LangChain Documents from Structured Data ---
|
67 |
+
# (This entire section remains unchanged as requested)
|
68 |
+
structured_docs = []
|
69 |
+
doc_id_counter = 0
|
70 |
+
print("Processing structured data into granular documents...")
|
71 |
+
# --- Start of Unchanged Document Creation Logic ---
|
72 |
+
contact_info = resume_data.get("CONTACT INFO", {})
|
73 |
+
if contact_info:
|
74 |
+
contact_text = f"Contact Info: Phone: {contact_info.get('phone', 'N/A')}, Location: {contact_info.get('location', 'N/A')}, Email: {contact_info.get('email', 'N/A')}, GitHub: {contact_info.get('github_user', 'N/A')}, LinkedIn: {contact_info.get('linkedin_user', 'N/A')}"
|
75 |
+
metadata = {"category": "CONTACT INFO", "source_doc_id": str(doc_id_counter)} # Ensure ID is string
|
76 |
+
structured_docs.append(Document(page_content=contact_text, metadata=metadata))
|
77 |
+
doc_id_counter += 1
|
78 |
+
|
79 |
+
education_list = resume_data.get("EDUCATION", [])
|
80 |
+
for i, entry in enumerate(education_list):
|
81 |
+
edu_text = f"Education: {entry.get('degree', '')} in {entry.get('major', '')} from {entry.get('institution', '')} ({entry.get('dates', '')})."
|
82 |
+
metadata = {
|
83 |
+
"category": "EDUCATION",
|
84 |
+
"institution": entry.get('institution', 'N/A'), # Ensure N/A or actual string
|
85 |
+
"degree": entry.get('degree', 'N/A'),
|
86 |
+
"major": entry.get('major', 'N/A'),
|
87 |
+
"dates": entry.get('dates', 'N/A'),
|
88 |
+
"item_index": i,
|
89 |
+
"source_doc_id": str(doc_id_counter) # Ensure ID is string
|
90 |
+
}
|
91 |
+
# Ensure all metadata values are strings, ints, floats, or bools
|
92 |
+
metadata = {k: (v if isinstance(v, (str, int, float, bool)) else str(v)) for k, v in metadata.items()}
|
93 |
+
structured_docs.append(Document(page_content=edu_text.strip(), metadata=metadata))
|
94 |
+
doc_id_counter += 1
|
95 |
+
|
96 |
+
tech_strengths = resume_data.get("TECHNICAL STRENGTHS", {})
|
97 |
+
for sub_category, skills in tech_strengths.items():
|
98 |
+
if isinstance(skills, list) and skills:
|
99 |
+
skills_text = f"Technical Strengths - {sub_category}: {', '.join(skills)}"
|
100 |
+
metadata = {"category": "TECHNICAL STRENGTHS", "sub_category": sub_category, "source_doc_id": str(doc_id_counter)}
|
101 |
+
metadata = {k: (v if isinstance(v, (str, int, float, bool)) else str(v)) for k, v in metadata.items()}
|
102 |
+
structured_docs.append(Document(page_content=skills_text, metadata=metadata))
|
103 |
+
doc_id_counter += 1
|
104 |
+
|
105 |
+
# Process WORK EXPERIENCE (Using relevant_skills)
|
106 |
+
work_list = resume_data.get("WORK EXPERIENCE", [])
|
107 |
+
for i, entry in enumerate(work_list):
|
108 |
+
title = entry.get('title', 'N/A')
|
109 |
+
org = entry.get('organization', 'N/A')
|
110 |
+
dates = entry.get('dates', 'N/A')
|
111 |
+
points = entry.get('description_points', [])
|
112 |
+
# --- MODIFICATION START ---
|
113 |
+
skills_list = entry.get('relevant_skills', []) # Get pre-associated skills
|
114 |
+
skills_str = "; ".join(skills_list) if skills_list else "N/A"
|
115 |
+
# --- MODIFICATION END ---
|
116 |
+
entry_context = f"Work Experience: {title} at {org} ({dates})"
|
117 |
+
|
118 |
+
if not points:
|
119 |
+
base_metadata = {
|
120 |
+
"category": "WORK EXPERIENCE", "title": title, "organization": org,
|
121 |
+
"dates": dates, "item_index": i, "point_index": -1,
|
122 |
+
"source_doc_id": str(doc_id_counter),
|
123 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
124 |
+
}
|
125 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
126 |
+
doc_id_counter += 1
|
127 |
+
else:
|
128 |
+
# Create one doc for the header/context info
|
129 |
+
base_metadata = {
|
130 |
+
"category": "WORK EXPERIENCE", "title": title, "organization": org,
|
131 |
+
"dates": dates, "item_index": i, "point_index": -1, # Indicate context doc
|
132 |
+
"source_doc_id": str(doc_id_counter),
|
133 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
134 |
+
}
|
135 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
136 |
+
# Create separate docs for each point, inheriting skills
|
137 |
+
for j, point in enumerate(points):
|
138 |
+
point_text = f"{entry_context}:\n- {point.strip()}"
|
139 |
+
point_metadata = {
|
140 |
+
"category": "WORK EXPERIENCE", "title": title, "organization": org,
|
141 |
+
"dates": dates, "item_index": i, "point_index": j,
|
142 |
+
"source_doc_id": str(doc_id_counter), # Link back to original entry ID
|
143 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
144 |
+
}
|
145 |
+
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
|
146 |
+
doc_id_counter += 1 # Increment ID only once per WORK EXPERIENCE entry
|
147 |
+
|
148 |
+
# Process PROJECTS (Using technologies field, mapping to 'skills' metadata key)
|
149 |
+
project_list = resume_data.get("PROJECTS", [])
|
150 |
+
for i, entry in enumerate(project_list):
|
151 |
+
name = entry.get('name', 'Unnamed Project')
|
152 |
+
# --- MODIFICATION START ---
|
153 |
+
# Use 'technologies' from JSON for projects, but map to 'skills' metadata key
|
154 |
+
skills_list = entry.get('technologies', [])
|
155 |
+
skills_str = "; ".join(skills_list) if skills_list else "N/A"
|
156 |
+
# --- MODIFICATION END ---
|
157 |
+
points = entry.get('description_points', [])
|
158 |
+
# Include skills string in context text as well for embedding
|
159 |
+
entry_context = f"Project: {name} (Skills: {skills_str if skills_list else 'N/A'})"
|
160 |
+
|
161 |
+
if not points:
|
162 |
+
base_metadata = {
|
163 |
+
"category": "PROJECTS", "name": name,
|
164 |
+
"item_index": i, "point_index": -1,
|
165 |
+
"source_doc_id": str(doc_id_counter),
|
166 |
+
"skills": skills_str # --- ADDED/RENAMED SKILLS ---
|
167 |
+
}
|
168 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
169 |
+
doc_id_counter += 1
|
170 |
+
else:
|
171 |
+
# Create one doc for the header/context info
|
172 |
+
base_metadata = {
|
173 |
+
"category": "PROJECTS", "name": name,
|
174 |
+
"item_index": i, "point_index": -1, # Indicate context doc
|
175 |
+
"source_doc_id": str(doc_id_counter),
|
176 |
+
"skills": skills_str # --- ADDED/RENAMED SKILLS ---
|
177 |
+
}
|
178 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
179 |
+
# Create separate docs for each point, inheriting skills
|
180 |
+
for j, point in enumerate(points):
|
181 |
+
point_text = f"{entry_context}:\n- {point.strip()}"
|
182 |
+
point_metadata = {
|
183 |
+
"category": "PROJECTS", "name": name,
|
184 |
+
"item_index": i, "point_index": j,
|
185 |
+
"source_doc_id": str(doc_id_counter),
|
186 |
+
"skills": skills_str # --- ADDED/RENAMED SKILLS ---
|
187 |
+
}
|
188 |
+
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
|
189 |
+
doc_id_counter += 1 # Increment ID only once per PROJECT entry
|
190 |
+
|
191 |
+
|
192 |
+
# Process ONLINE CERTIFICATIONS (Using relevant_skills)
|
193 |
+
cert_list = resume_data.get("ONLINE CERTIFICATIONS", [])
|
194 |
+
for i, entry in enumerate(cert_list):
|
195 |
+
name = entry.get('name', 'N/A')
|
196 |
+
issuer = entry.get('issuer', 'N/A')
|
197 |
+
date = entry.get('date', 'N/A')
|
198 |
+
points = entry.get('description_points', [])
|
199 |
+
# --- MODIFICATION START ---
|
200 |
+
skills_list = entry.get('relevant_skills', []) # Get pre-associated skills
|
201 |
+
skills_str = "; ".join(skills_list) if skills_list else "N/A"
|
202 |
+
# --- MODIFICATION END ---
|
203 |
+
entry_context = f"Certification: {name} from {issuer} ({date})"
|
204 |
+
|
205 |
+
if not points:
|
206 |
+
base_metadata = {
|
207 |
+
"category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer,
|
208 |
+
"date": date, "item_index": i, "point_index": -1,
|
209 |
+
"source_doc_id": str(doc_id_counter),
|
210 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
211 |
+
}
|
212 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
213 |
+
doc_id_counter += 1
|
214 |
+
else:
|
215 |
+
# Create one doc for the header/context info
|
216 |
+
base_metadata = {
|
217 |
+
"category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer,
|
218 |
+
"date": date, "item_index": i, "point_index": -1, # Indicate context doc
|
219 |
+
"source_doc_id": str(doc_id_counter),
|
220 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
221 |
+
}
|
222 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
223 |
+
# Create separate docs for each point, inheriting skills
|
224 |
+
for j, point in enumerate(points):
|
225 |
+
if point.strip().endswith(':'): continue
|
226 |
+
point_text = f"{entry_context}:\n- {point.strip().lstrip('β- ')}"
|
227 |
+
point_metadata = {
|
228 |
+
"category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer,
|
229 |
+
"date": date, "item_index": i, "point_index": j,
|
230 |
+
"source_doc_id": str(doc_id_counter),
|
231 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
232 |
+
}
|
233 |
+
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
|
234 |
+
doc_id_counter += 1 # Increment ID only once per CERTIFICATION entry
|
235 |
+
|
236 |
+
# Process COURSES (Using relevant_skills)
|
237 |
+
course_list = resume_data.get("COURSES", [])
|
238 |
+
for i, entry in enumerate(course_list):
|
239 |
+
code = entry.get('code', '')
|
240 |
+
name = entry.get('name', 'N/A')
|
241 |
+
inst = entry.get('institution', 'N/A')
|
242 |
+
term = entry.get('term', 'N/A')
|
243 |
+
points = entry.get('description_points', [])
|
244 |
+
# --- MODIFICATION START ---
|
245 |
+
skills_list = entry.get('relevant_skills', []) # Get pre-associated skills
|
246 |
+
skills_str = "; ".join(skills_list) if skills_list else "N/A"
|
247 |
+
# --- MODIFICATION END ---
|
248 |
+
entry_context = f"Course: {code}: {name} at {inst} ({term})"
|
249 |
+
|
250 |
+
if not points:
|
251 |
+
base_metadata = {
|
252 |
+
"category": "COURSES", "code": code, "name": name, "institution": inst,
|
253 |
+
"term": term, "item_index": i, "point_index": -1,
|
254 |
+
"source_doc_id": str(doc_id_counter),
|
255 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
256 |
+
}
|
257 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
258 |
+
doc_id_counter += 1
|
259 |
+
else:
|
260 |
+
# Create one doc for the header/context info
|
261 |
+
base_metadata = {
|
262 |
+
"category": "COURSES", "code": code, "name": name, "institution": inst,
|
263 |
+
"term": term, "item_index": i, "point_index": -1, # Indicate context doc
|
264 |
+
"source_doc_id": str(doc_id_counter),
|
265 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
266 |
+
}
|
267 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
268 |
+
# Create separate docs for each point, inheriting skills
|
269 |
+
for j, point in enumerate(points):
|
270 |
+
point_text = f"{entry_context}:\n- {point.strip()}"
|
271 |
+
point_metadata = {
|
272 |
+
"category": "COURSES", "code": code, "name": name, "institution": inst,
|
273 |
+
"term": term, "item_index": i, "point_index": j,
|
274 |
+
"source_doc_id": str(doc_id_counter),
|
275 |
+
"skills": skills_str # --- ADDED SKILLS ---
|
276 |
+
}
|
277 |
+
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
|
278 |
+
doc_id_counter += 1 # Increment ID only once per COURSE entry
|
279 |
+
|
280 |
+
# Process EXTRACURRICULAR ACTIVITIES (No skills assumed here)
|
281 |
+
extra_list = resume_data.get("EXTRACURRICULAR ACTIVITIES", [])
|
282 |
+
for i, entry in enumerate(extra_list):
|
283 |
+
org = entry.get('organization', 'N/A')
|
284 |
+
points = entry.get('description_points', [])
|
285 |
+
entry_context = f"Extracurricular: {org}"
|
286 |
+
if not points:
|
287 |
+
metadata = {
|
288 |
+
"category": "EXTRACURRICULAR ACTIVITIES", "organization": org,
|
289 |
+
"item_index": i, "point_index": -1,
|
290 |
+
"source_doc_id": str(doc_id_counter)
|
291 |
+
}
|
292 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(metadata)))
|
293 |
+
doc_id_counter += 1
|
294 |
+
else:
|
295 |
+
# Create one doc for the header/context info
|
296 |
+
base_metadata = {
|
297 |
+
"category": "EXTRACURRICULAR ACTIVITIES", "organization": org,
|
298 |
+
"item_index": i, "point_index": -1, # Indicate context doc
|
299 |
+
"source_doc_id": str(doc_id_counter)
|
300 |
+
}
|
301 |
+
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata)))
|
302 |
+
# Create separate docs for each point
|
303 |
+
for j, point in enumerate(points):
|
304 |
+
point_text = f"{entry_context}:\n- {point.strip()}"
|
305 |
+
point_metadata = {
|
306 |
+
"category": "EXTRACURRICULAR ACTIVITIES", "organization": org,
|
307 |
+
"item_index": i, "point_index": j,
|
308 |
+
"source_doc_id": str(doc_id_counter)
|
309 |
+
}
|
310 |
+
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata)))
|
311 |
+
doc_id_counter += 1
|
312 |
+
|
313 |
+
|
314 |
+
if not structured_docs:
|
315 |
+
print("Error: Failed to create any documents from the resume data. Check processing logic.")
|
316 |
+
exit()
|
317 |
+
|
318 |
+
print(f"Created {len(structured_docs)} granular Document objects.")
|
319 |
+
# Optional: Print a sample document
|
320 |
+
print("\nSample Document:")
|
321 |
+
print(structured_docs[0]) # Print first doc as example
|
322 |
+
|
323 |
+
# --- Embeddings Model ---
|
324 |
+
print("Initializing embeddings model...")
|
325 |
+
embeddings_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
326 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
327 |
+
print(f"Embeddings model '{embeddings_model_name}' initialized.")
|
328 |
+
|
329 |
+
# --- ChromaDB Vector Store Setup ---
|
330 |
+
CHROMA_PERSIST_DIR = "/data/cv_chroma_db_structured" # Use a different dir if needed
|
331 |
+
CHROMA_COLLECTION_NAME = "cv_structured_collection"
|
332 |
+
print(f"Connecting to ChromaDB client at '{CHROMA_PERSIST_DIR}'...")
|
333 |
+
client = chromadb.PersistentClient(path=CHROMA_PERSIST_DIR)
|
334 |
+
vectorstore = None
|
335 |
+
collection_exists = False
|
336 |
+
collection_count = 0
|
337 |
+
|
338 |
+
try:
|
339 |
+
existing_collections = [col.name for col in client.list_collections()]
|
340 |
+
if CHROMA_COLLECTION_NAME in existing_collections:
|
341 |
+
collection = client.get_collection(name=CHROMA_COLLECTION_NAME)
|
342 |
+
collection_count = collection.count()
|
343 |
+
if collection_count > 0:
|
344 |
+
collection_exists = True
|
345 |
+
print(f"Collection '{CHROMA_COLLECTION_NAME}' already exists with {collection_count} documents.")
|
346 |
+
else:
|
347 |
+
print(f"Collection '{CHROMA_COLLECTION_NAME}' exists but is empty. Will attempt to create/populate.")
|
348 |
+
collection_exists = False
|
349 |
+
try:
|
350 |
+
client.delete_collection(name=CHROMA_COLLECTION_NAME)
|
351 |
+
print(f"Deleted empty collection '{CHROMA_COLLECTION_NAME}'.")
|
352 |
+
except Exception as delete_e:
|
353 |
+
print(f"Warning: Could not delete potentially empty collection '{CHROMA_COLLECTION_NAME}': {delete_e}")
|
354 |
+
else: print(f"Collection '{CHROMA_COLLECTION_NAME}' does not exist. Will create.")
|
355 |
+
except Exception as e:
|
356 |
+
print(f"Error checking/preparing ChromaDB collection: {e}. Assuming need to create.")
|
357 |
+
collection_exists = False
|
358 |
+
|
359 |
+
# Populate Vector Store ONLY IF NEEDED
|
360 |
+
if not collection_exists:
|
361 |
+
print("\nPopulating ChromaDB vector store (this may take a moment)...")
|
362 |
+
if not structured_docs:
|
363 |
+
print("Error: No documents to add to vector store.")
|
364 |
+
exit()
|
365 |
+
try:
|
366 |
+
vectorstore = Chroma.from_documents(
|
367 |
+
documents=structured_docs,
|
368 |
+
embedding=embeddings, # Use the initialized embeddings function
|
369 |
+
collection_name=CHROMA_COLLECTION_NAME,
|
370 |
+
persist_directory=CHROMA_PERSIST_DIR
|
371 |
+
)
|
372 |
+
vectorstore.persist()
|
373 |
+
print("Vector store populated and persisted.")
|
374 |
+
except Exception as e:
|
375 |
+
print(f"\n--- Error during ChromaDB storage: {e} ---")
|
376 |
+
print("Check metadata types (should be str, int, float, bool).")
|
377 |
+
exit()
|
378 |
+
else: # Load existing store
|
379 |
+
print(f"\nLoading existing vector store from '{CHROMA_PERSIST_DIR}'...")
|
380 |
+
try:
|
381 |
+
vectorstore = Chroma(
|
382 |
+
persist_directory=CHROMA_PERSIST_DIR,
|
383 |
+
embedding_function=embeddings,
|
384 |
+
collection_name=CHROMA_COLLECTION_NAME
|
385 |
+
)
|
386 |
+
print("Existing vector store loaded successfully.")
|
387 |
+
except Exception as e:
|
388 |
+
print(f"\n--- Error loading existing ChromaDB store: {e} ---")
|
389 |
+
exit()
|
390 |
+
|
391 |
+
if not vectorstore:
|
392 |
+
print("Error: Vector store could not be loaded or created. Exiting.")
|
393 |
+
exit()
|
394 |
+
|
395 |
+
|
396 |
+
# --- Load Fine-tuned CTransformers model ---
|
397 |
+
# (This part remains unchanged)
|
398 |
+
model_path_gguf = "/data/zephyr-7b-beta.Q4_K_M.gguf" # MAKE SURE THIS PATH IS CORRECT
|
399 |
+
print(f"Initializing Fine-Tuned CTransformers LLM from: {model_path_gguf}")
|
400 |
+
config = {
|
401 |
+
'max_new_tokens': 512, 'temperature': 0.1, 'context_length': 2048,
|
402 |
+
'gpu_layers': 0, 'stream': False, 'threads': -1, 'top_k': 40,
|
403 |
+
'top_p': 0.9, 'repetition_penalty': 1.1
|
404 |
+
}
|
405 |
+
llm = None
|
406 |
+
if not os.path.exists(model_path_gguf):
|
407 |
+
print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
408 |
+
print(f"ERROR: GGUF Model file not found at: {model_path_gguf}")
|
409 |
+
print(f"Please download the model and place it at the correct path, or update model_path_gguf.")
|
410 |
+
print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
411 |
+
print("LLM initialization skipped.")
|
412 |
+
else:
|
413 |
+
try:
|
414 |
+
llm = CTransformers(model=model_path_gguf, model_type='llama', config=config)
|
415 |
+
print("Fine-Tuned CTransformers LLM initialized.")
|
416 |
+
except Exception as e:
|
417 |
+
print(f"Error initializing CTransformers: {e}")
|
418 |
+
print("LLM initialization failed.")
|
419 |
+
# Decide if you want to exit or continue without LLM
|
420 |
+
# exit()
|
421 |
+
|
422 |
+
# --- RAG Setup ---
|
423 |
+
def format_docs(docs):
|
424 |
+
# Expects a list of Document objects
|
425 |
+
return "\n\n".join(doc.page_content for doc in docs if isinstance(doc, Document))
|
426 |
+
|
427 |
+
|
428 |
+
# --- RAG Function using ChromaDB ---
|
429 |
+
def answer_resume_question(user_question):
|
430 |
+
"""Answers questions using RAG with ChromaDB similarity search."""
|
431 |
+
k_limit = 5 # Number of documents to retrieve
|
432 |
+
print(f"\nReceived question: {user_question}")
|
433 |
+
|
434 |
+
if not vectorstore:
|
435 |
+
return "Error: Vector store is not available."
|
436 |
+
|
437 |
+
print(f"Performing similarity search (top {k_limit})...")
|
438 |
+
try:
|
439 |
+
# 1. Retrieve documents using ChromaDB similarity search
|
440 |
+
# Use similarity_search_with_score to get scores if needed for logging/debugging
|
441 |
+
# results_with_scores = vectorstore.similarity_search_with_score(user_question, k=k_limit)
|
442 |
+
# retrieved_docs = [doc for doc, score in results_with_scores]
|
443 |
+
# similarity_scores = [score for doc, score in results_with_scores]
|
444 |
+
|
445 |
+
# Or simpler retrieval if scores aren't needed immediately:
|
446 |
+
retrieved_docs = vectorstore.similarity_search(user_question, k=k_limit)
|
447 |
+
|
448 |
+
if not retrieved_docs:
|
449 |
+
print("No relevant documents found via similarity search.")
|
450 |
+
# Optionally add fallback logic here if needed
|
451 |
+
return "I couldn't find relevant information in the CV for your query."
|
452 |
+
|
453 |
+
print(f"Retrieved {len(retrieved_docs)} documents.")
|
454 |
+
# Log details of top retrieved docs
|
455 |
+
for i, doc in enumerate(retrieved_docs):
|
456 |
+
# score = similarity_scores[i] # Uncomment if using similarity_search_with_score
|
457 |
+
print(f" -> Top {i+1} Doc (Cat: {doc.metadata.get('category')}, SrcID: {doc.metadata.get('source_doc_id')}) Content: {doc.page_content.replace(os.linesep, ' ')}...")
|
458 |
+
|
459 |
+
# 2. Combine content
|
460 |
+
combined_context = format_docs(retrieved_docs) # Use the existing format_docs
|
461 |
+
|
462 |
+
# 3. Check if LLM is available
|
463 |
+
if not llm:
|
464 |
+
return "LLM is not available, cannot generate a final answer. Relevant context found:\n\n" + combined_context
|
465 |
+
|
466 |
+
# 4. Final Answer Generation Step
|
467 |
+
qa_template = """
|
468 |
+
Based *only* on the following context from Jaynil Jaiswal's CV, provide a detailed and comprehensive answer to the question.
|
469 |
+
If the context does not contain the information needed to answer the question fully, please state that clearly using phrases like 'Based on the context provided, I cannot answer...' or 'The provided context does not contain information about...'.
|
470 |
+
Do not make up any information or provide generic non-answers. You are free to selectively use sources from the context to answer the question.
|
471 |
+
|
472 |
+
Context:
|
473 |
+
{context}
|
474 |
+
|
475 |
+
Question: {question}
|
476 |
+
|
477 |
+
Answer:"""
|
478 |
+
qa_prompt = PromptTemplate.from_template(qa_template)
|
479 |
+
formatted_qa_prompt = qa_prompt.format(context=combined_context, question=user_question)
|
480 |
+
|
481 |
+
print("Generating final answer...")
|
482 |
+
answer = llm.invoke(formatted_qa_prompt).strip()
|
483 |
+
print(f"LLM Response: {answer}")
|
484 |
+
|
485 |
+
# Optional: Add the insufficient answer check here if desired
|
486 |
+
# if is_answer_insufficient(answer):
|
487 |
+
# print("LLM answer seems insufficient...")
|
488 |
+
# # Return fallback or the potentially insufficient answer based on preference
|
489 |
+
# return FALLBACK_MESSAGE # Assuming FALLBACK_MESSAGE is defined
|
490 |
+
|
491 |
+
except Exception as e:
|
492 |
+
print(f"Error during RAG execution: {e}")
|
493 |
+
answer = "Sorry, I encountered an error while processing your question."
|
494 |
+
|
495 |
+
return answer
|
496 |
+
# --- End Modification ---
|
497 |
+
|
498 |
+
|
499 |
+
# --- Gradio Interface ---
|
500 |
+
# (This part remains unchanged)
|
501 |
+
iface = gr.Interface(
|
502 |
+
fn=answer_resume_question,
|
503 |
+
inputs=gr.Textbox(label="π¬ Ask about my CV", placeholder="E.g. What was done at Oracle? List my projects.", lines=2),
|
504 |
+
outputs=gr.Textbox(label="π‘ Answer", lines=8),
|
505 |
+
title="π CV RAG Chatbot (ChromaDB + Granular Docs)",
|
506 |
+
description="Ask questions about the CV! (Uses local GGUF model via CTransformers)",
|
507 |
+
theme="soft",
|
508 |
+
allow_flagging="never"
|
509 |
+
)
|
510 |
+
|
511 |
+
# --- Run Gradio ---
|
512 |
+
if __name__ == "__main__":
|
513 |
+
print("Launching Gradio interface...")
|
514 |
+
# Make sure LLM was loaded successfully before launching
|
515 |
+
if vectorstore and llm:
|
516 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
517 |
+
elif not vectorstore:
|
518 |
+
print("Could not launch: Vector store failed to load.")
|
519 |
+
else: # LLM failed
|
520 |
+
print("Could not launch: LLM failed to load. Check model path and dependencies.")
|