Jbhansali commited on
Commit
f7a645b
Β·
1 Parent(s): 68e553f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +658 -0
app.py ADDED
@@ -0,0 +1,658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, sys
2
+ import subprocess
3
+ from huggingface_hub import snapshot_download
4
+
5
+ is_local_run = False
6
+
7
+ code_dir = snapshot_download("One-2-3-45/code") if not is_local_run else "../code" # , token=os.environ['TOKEN']
8
+
9
+ sys.path.append(code_dir)
10
+
11
+ elev_est_dir = os.path.abspath(os.path.join(code_dir, "one2345_elev_est"))
12
+ sys.path.append(elev_est_dir)
13
+
14
+ if not is_local_run:
15
+ # import pip
16
+ # pip.main(['install', elev_est_dir])
17
+ # export TORCH_CUDA_ARCH_LIST="7.0;7.2;8.0;8.6"
18
+ # export IABN_FORCE_CUDA=1
19
+ os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
20
+ os.environ["IABN_FORCE_CUDA"] = "1"
21
+ os.environ["FORCE_CUDA"] = "1"
22
+ # pip.main(["install", "inplace_abn"])
23
+ subprocess.run(['pip', 'install', 'inplace_abn'])
24
+ # FORCE_CUDA=1 pip install --no-cache-dir git+https://github.com/mit-han-lab/[email protected]
25
+ # pip.main(["install", "--no-cache-dir", "git+https://github.com/mit-han-lab/[email protected]"])
26
+ subprocess.run(['pip', 'install', '--no-cache-dir', 'git+https://github.com/mit-han-lab/[email protected]'])
27
+
28
+ import shutil
29
+ import torch
30
+ import fire
31
+ import gradio as gr
32
+ import numpy as np
33
+ import plotly.graph_objects as go
34
+ from functools import partial
35
+
36
+ import cv2
37
+ from PIL import Image
38
+ import trimesh
39
+ import tempfile
40
+ from zero123_utils import init_model, predict_stage1_gradio, zero123_infer
41
+ from sam_utils import sam_init, sam_out_nosave
42
+ from utils import image_preprocess_nosave, gen_poses
43
+ from one2345_elev_est.tools.estimate_wild_imgs import estimate_elev
44
+ from rembg import remove
45
+
46
+ _GPU_INDEX = 0
47
+
48
+ _TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
49
+
50
+
51
+ _DESCRIPTION = '''
52
+ <div>
53
+ <a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
54
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
55
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/One-2-3-45/One-2-3-45'><img src='https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social' /></a>
56
+ </div>
57
+ We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
58
+ '''
59
+ _USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
60
+ _BBOX_1 = "Predicting bounding box for the input image..."
61
+ _BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
62
+ _BBOX_3 = "Bounding box predicted. Adjust it using sliders or **Run Generation**."
63
+ _SAM = "Preprocessing the input image... (safety check, SAM segmentation, *etc*.)"
64
+ _GEN_1 = "Predicting multi-view images... (may take \~13 seconds) <br> Images will be shown in the bottom right blocks."
65
+ _GEN_2 = "Predicting nearby views and generating mesh... (may take \~33 seconds) <br> Mesh will be shown on the right."
66
+ _DONE = "Done! Mesh is shown on the right. <br> If it is not satisfactory, please select **Retry view** checkboxes for inaccurate views and click **Regenerate selected view(s)** at the bottom."
67
+ _REGEN_1 = "Selected view(s) are regenerated. You can click **Regenerate nearby views and mesh**. <br> Alternatively, if the regenerated view(s) are still not satisfactory, you can repeat the previous step (select the view and regenerate)."
68
+ _REGEN_2 = "Regeneration done. Mesh is shown on the right."
69
+
70
+
71
+ def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
72
+ '''
73
+ :param polar_deg (float).
74
+ :param azimuth_deg (float).
75
+ :param radius_m (float).
76
+ :param fov_deg (float).
77
+ :return (5, 3) array of float with (x, y, z).
78
+ '''
79
+ polar_rad = np.deg2rad(polar_deg)
80
+ azimuth_rad = np.deg2rad(azimuth_deg)
81
+ fov_rad = np.deg2rad(fov_deg)
82
+ polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
83
+
84
+ # Camera pose center:
85
+ cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
86
+ cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
87
+ cam_z = radius_m * np.sin(polar_rad)
88
+
89
+ # Obtain four corners of camera frustum, assuming it is looking at origin.
90
+ # First, obtain camera extrinsics (rotation matrix only):
91
+ camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
92
+ -np.sin(azimuth_rad),
93
+ -np.cos(azimuth_rad) * np.sin(polar_rad)],
94
+ [np.sin(azimuth_rad) * np.cos(polar_rad),
95
+ np.cos(azimuth_rad),
96
+ -np.sin(azimuth_rad) * np.sin(polar_rad)],
97
+ [np.sin(polar_rad),
98
+ 0.0,
99
+ np.cos(polar_rad)]])
100
+
101
+ # Multiply by corners in camera space to obtain go to space:
102
+ corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
103
+ corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
104
+ corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
105
+ corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
106
+ corn1 = np.dot(camera_R, corn1)
107
+ corn2 = np.dot(camera_R, corn2)
108
+ corn3 = np.dot(camera_R, corn3)
109
+ corn4 = np.dot(camera_R, corn4)
110
+
111
+ # Now attach as offset to actual 3D camera position:
112
+ corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
113
+ corn_x1 = cam_x + corn1[0]
114
+ corn_y1 = cam_y + corn1[1]
115
+ corn_z1 = cam_z + corn1[2]
116
+ corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
117
+ corn_x2 = cam_x + corn2[0]
118
+ corn_y2 = cam_y + corn2[1]
119
+ corn_z2 = cam_z + corn2[2]
120
+ corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
121
+ corn_x3 = cam_x + corn3[0]
122
+ corn_y3 = cam_y + corn3[1]
123
+ corn_z3 = cam_z + corn3[2]
124
+ corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
125
+ corn_x4 = cam_x + corn4[0]
126
+ corn_y4 = cam_y + corn4[1]
127
+ corn_z4 = cam_z + corn4[2]
128
+
129
+ xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
130
+ ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
131
+ zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
132
+
133
+ return np.array([xs, ys, zs]).T
134
+
135
+ class CameraVisualizer:
136
+ def __init__(self, gradio_plot):
137
+ self._gradio_plot = gradio_plot
138
+ self._fig = None
139
+ self._polar = 0.0
140
+ self._azimuth = 0.0
141
+ self._radius = 0.0
142
+ self._raw_image = None
143
+ self._8bit_image = None
144
+ self._image_colorscale = None
145
+
146
+ def encode_image(self, raw_image, elev=90):
147
+ '''
148
+ :param raw_image (H, W, 3) array of uint8 in [0, 255].
149
+ '''
150
+ # https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
151
+
152
+ dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
153
+ idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
154
+
155
+ self._raw_image = raw_image
156
+ self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
157
+ # self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
158
+ # 'P', palette='WEB', dither=None)
159
+ self._image_colorscale = [
160
+ [i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
161
+ self._elev = elev
162
+ # return self.update_figure()
163
+
164
+ def update_figure(self):
165
+ fig = go.Figure()
166
+
167
+ if self._raw_image is not None:
168
+ (H, W, C) = self._raw_image.shape
169
+
170
+ x = np.zeros((H, W))
171
+ (y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
172
+
173
+ angle_deg = self._elev-90
174
+ angle = np.radians(90-self._elev)
175
+ rotation_matrix = np.array([
176
+ [np.cos(angle), 0, np.sin(angle)],
177
+ [0, 1, 0],
178
+ [-np.sin(angle), 0, np.cos(angle)]
179
+ ])
180
+ # Assuming x, y, z are the original 3D coordinates of the image
181
+ coordinates = np.stack((x, y, z), axis=-1) # Combine x, y, z into a single array
182
+ # Apply the rotation matrix
183
+ rotated_coordinates = np.matmul(coordinates, rotation_matrix)
184
+ # Extract the new x, y, z coordinates from the rotated coordinates
185
+ x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
186
+
187
+ fig.add_trace(go.Surface(
188
+ x=x, y=y, z=z,
189
+ surfacecolor=self._8bit_image,
190
+ cmin=0,
191
+ cmax=255,
192
+ colorscale=self._image_colorscale,
193
+ showscale=False,
194
+ lighting_diffuse=1.0,
195
+ lighting_ambient=1.0,
196
+ lighting_fresnel=1.0,
197
+ lighting_roughness=1.0,
198
+ lighting_specular=0.3))
199
+
200
+ scene_bounds = 3.5
201
+ base_radius = 2.5
202
+ zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
203
+ fov_deg = 50.0
204
+ edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
205
+
206
+ input_cone = calc_cam_cone_pts_3d(
207
+ angle_deg, 0.0, base_radius, fov_deg) # (5, 3).
208
+ output_cone = calc_cam_cone_pts_3d(
209
+ self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
210
+ output_cones = []
211
+ for i in range(1,4):
212
+ output_cones.append(calc_cam_cone_pts_3d(
213
+ angle_deg, i*90, base_radius + self._radius * zoom_scale, fov_deg))
214
+ delta_deg = 30 if angle_deg <= -15 else -30
215
+ for i in range(4):
216
+ output_cones.append(calc_cam_cone_pts_3d(
217
+ angle_deg+delta_deg, 30+i*90, base_radius + self._radius * zoom_scale, fov_deg))
218
+
219
+ cones = [(input_cone, 'rgb(174, 54, 75)', 'Input view (Predicted view 1)')]
220
+ for i in range(len(output_cones)):
221
+ cones.append((output_cones[i], 'rgb(32, 77, 125)', f'Predicted view {i+2}'))
222
+
223
+ for idx, (cone, clr, legend) in enumerate(cones):
224
+
225
+ for (i, edge) in enumerate(edges):
226
+ (x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
227
+ (y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
228
+ (z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
229
+ fig.add_trace(go.Scatter3d(
230
+ x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
231
+ line=dict(color=clr, width=3),
232
+ name=legend, showlegend=(i == 1) and (idx <= 1)))
233
+
234
+ # Add label.
235
+ if cone[0, 2] <= base_radius / 2.0:
236
+ fig.add_trace(go.Scatter3d(
237
+ x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
238
+ mode='text', text=legend, textposition='bottom center'))
239
+ else:
240
+ fig.add_trace(go.Scatter3d(
241
+ x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
242
+ mode='text', text=legend, textposition='top center'))
243
+
244
+ # look at center of scene
245
+ fig.update_layout(
246
+ # width=640,
247
+ # height=480,
248
+ # height=400,
249
+ height=450,
250
+ autosize=True,
251
+ hovermode=False,
252
+ margin=go.layout.Margin(l=0, r=0, b=0, t=0),
253
+ showlegend=False,
254
+ legend=dict(
255
+ yanchor='bottom',
256
+ y=0.01,
257
+ xanchor='right',
258
+ x=0.99,
259
+ ),
260
+ scene=dict(
261
+ aspectmode='manual',
262
+ aspectratio=dict(x=1, y=1, z=1.0),
263
+ camera=dict(
264
+ eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
265
+ center=dict(x=0.0, y=0.0, z=0.0),
266
+ up=dict(x=0.0, y=0.0, z=1.0)),
267
+ xaxis_title='',
268
+ yaxis_title='',
269
+ zaxis_title='',
270
+ xaxis=dict(
271
+ range=[-scene_bounds, scene_bounds],
272
+ showticklabels=False,
273
+ showgrid=True,
274
+ zeroline=False,
275
+ showbackground=True,
276
+ showspikes=False,
277
+ showline=False,
278
+ ticks=''),
279
+ yaxis=dict(
280
+ range=[-scene_bounds, scene_bounds],
281
+ showticklabels=False,
282
+ showgrid=True,
283
+ zeroline=False,
284
+ showbackground=True,
285
+ showspikes=False,
286
+ showline=False,
287
+ ticks=''),
288
+ zaxis=dict(
289
+ range=[-scene_bounds, scene_bounds],
290
+ showticklabels=False,
291
+ showgrid=True,
292
+ zeroline=False,
293
+ showbackground=True,
294
+ showspikes=False,
295
+ showline=False,
296
+ ticks='')))
297
+
298
+ self._fig = fig
299
+ return fig
300
+
301
+
302
+ def stage1_run(models, device, cam_vis, tmp_dir,
303
+ input_im, scale, ddim_steps, elev=None, rerun_all=[],
304
+ *btn_retrys):
305
+ is_rerun = True if cam_vis is None else False
306
+ model = models['turncam'].half()
307
+
308
+ stage1_dir = os.path.join(tmp_dir, "stage1_8")
309
+ if not is_rerun:
310
+ os.makedirs(stage1_dir, exist_ok=True)
311
+ output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
312
+ stage2_steps = 50 # ddim_steps
313
+ zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
314
+ try:
315
+ elev_output = estimate_elev(tmp_dir)
316
+ except:
317
+ print("Failed to estimate polar angle")
318
+ elev_output = 90
319
+ print("Estimated polar angle:", elev_output)
320
+ gen_poses(tmp_dir, elev_output)
321
+ show_in_im1 = np.asarray(input_im, dtype=np.uint8)
322
+ cam_vis.encode_image(show_in_im1, elev=elev_output)
323
+ new_fig = cam_vis.update_figure()
324
+
325
+ flag_lower_cam = elev_output <= 75
326
+ if flag_lower_cam:
327
+ output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale)
328
+ else:
329
+ output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale)
330
+ torch.cuda.empty_cache()
331
+ return (90-elev_output, new_fig, *output_ims, *output_ims_2)
332
+ else:
333
+ rerun_idx = [i for i in range(len(btn_retrys)) if btn_retrys[i]]
334
+ if 90-int(elev["label"]) > 75:
335
+ rerun_idx_in = [i if i < 4 else i+4 for i in rerun_idx]
336
+ else:
337
+ rerun_idx_in = rerun_idx
338
+ for idx in rerun_idx_in:
339
+ if idx not in rerun_all:
340
+ rerun_all.append(idx)
341
+ print("rerun_idx", rerun_all)
342
+ output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=rerun_idx_in, device=device, ddim_steps=ddim_steps, scale=scale)
343
+ outputs = [gr.update(visible=True)] * 8
344
+ for idx, view_idx in enumerate(rerun_idx):
345
+ outputs[view_idx] = output_ims[idx]
346
+ reset = [gr.update(value=False)] * 8
347
+ torch.cuda.empty_cache()
348
+ return (rerun_all, *reset, *outputs)
349
+
350
+ def stage2_run(models, device, tmp_dir,
351
+ elev, scale, is_glb=False, rerun_all=[], stage2_steps=50):
352
+ flag_lower_cam = 90-int(elev["label"]) <= 75
353
+ is_rerun = True if rerun_all else False
354
+ model = models['turncam'].half()
355
+ if not is_rerun:
356
+ if flag_lower_cam:
357
+ zero123_infer(model, tmp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale)
358
+ else:
359
+ zero123_infer(model, tmp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale)
360
+ else:
361
+ print("rerun_idx", rerun_all)
362
+ zero123_infer(model, tmp_dir, indices=rerun_all, device=device, ddim_steps=stage2_steps, scale=scale)
363
+
364
+ dataset = tmp_dir
365
+ main_dir_path = os.path.dirname(__file__)
366
+ torch.cuda.empty_cache()
367
+ os.chdir(os.path.join(code_dir, 'SparseNeuS_demo_v1/'))
368
+
369
+ bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py --specific_dataset_name {dataset} --mode export_mesh --conf confs/one2345_lod0_val_demo.conf'
370
+ print(bash_script)
371
+ os.system(bash_script)
372
+ os.chdir(main_dir_path)
373
+
374
+ ply_path = os.path.join(tmp_dir, f"meshes_val_bg/lod0/mesh_00215000_gradio_lod0.ply")
375
+ mesh_ext = ".glb" if is_glb else ".obj"
376
+ mesh_path = os.path.join(tmp_dir, f"mesh{mesh_ext}")
377
+ # Read the textured mesh from .ply file
378
+ mesh = trimesh.load_mesh(ply_path)
379
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi/2, [1, 0, 0])
380
+ mesh.apply_transform(rotation_matrix)
381
+ rotation_matrix = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1])
382
+ mesh.apply_transform(rotation_matrix)
383
+ # flip x
384
+ mesh.vertices[:, 0] = -mesh.vertices[:, 0]
385
+ mesh.faces = np.fliplr(mesh.faces)
386
+ # Export the mesh as .obj file with colors
387
+ if not is_glb:
388
+ mesh.export(mesh_path, file_type='obj', include_color=True)
389
+ else:
390
+ mesh.export(mesh_path, file_type='glb')
391
+ torch.cuda.empty_cache()
392
+
393
+ if not is_rerun:
394
+ return (mesh_path)
395
+ else:
396
+ return (mesh_path, gr.update(value=[]), gr.update(visible=False), gr.update(visible=False))
397
+
398
+ def nsfw_check(models, raw_im, device='cuda'):
399
+ safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
400
+ (_, has_nsfw_concept) = models['nsfw'](
401
+ images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
402
+ del safety_checker_input
403
+ if np.any(has_nsfw_concept):
404
+ print('NSFW content detected.')
405
+ return Image.open("unsafe.png")
406
+ else:
407
+ print('Safety check passed.')
408
+ return False
409
+
410
+ def preprocess_run(predictor, models, raw_im, preprocess, *bbox_sliders):
411
+ raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
412
+ check_results = nsfw_check(models, raw_im, device=predictor.device)
413
+ if check_results:
414
+ return check_results
415
+ image_sam = sam_out_nosave(predictor, raw_im.convert("RGB"), *bbox_sliders)
416
+ input_256 = image_preprocess_nosave(image_sam, lower_contrast=preprocess, rescale=True)
417
+ torch.cuda.empty_cache()
418
+ return input_256
419
+
420
+ def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
421
+ """Draw a bounding box annotation for an image."""
422
+ print("Slider adjusted, drawing bbox...")
423
+ image.thumbnail([512, 512], Image.Resampling.LANCZOS)
424
+ image_size = image.size
425
+ if max(image_size) > 224:
426
+ image.thumbnail([224, 224], Image.Resampling.LANCZOS)
427
+ shrink_ratio = max(image.size) / max(image_size)
428
+ x_min = int(x_min * shrink_ratio)
429
+ y_min = int(y_min * shrink_ratio)
430
+ x_max = int(x_max * shrink_ratio)
431
+ y_max = int(y_max * shrink_ratio)
432
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2BGRA)
433
+ image = cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, int(max(max(image.shape) / 400*2, 2)))
434
+ return cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) # image[:, :, ::-1]
435
+
436
+ def init_bbox(image):
437
+ image.thumbnail([512, 512], Image.Resampling.LANCZOS)
438
+ width, height = image.size
439
+ image_rem = image.convert('RGBA')
440
+ image_nobg = remove(image_rem, alpha_matting=True)
441
+ arr = np.asarray(image_nobg)[:,:,-1]
442
+ x_nonzero = np.nonzero(arr.sum(axis=0))
443
+ y_nonzero = np.nonzero(arr.sum(axis=1))
444
+ x_min = int(x_nonzero[0].min())
445
+ y_min = int(y_nonzero[0].min())
446
+ x_max = int(x_nonzero[0].max())
447
+ y_max = int(y_nonzero[0].max())
448
+ image_mini = image.copy()
449
+ image_mini.thumbnail([224, 224], Image.Resampling.LANCZOS)
450
+ shrink_ratio = max(image_mini.size) / max(width, height)
451
+ x_min_shrink = int(x_min * shrink_ratio)
452
+ y_min_shrink = int(y_min * shrink_ratio)
453
+ x_max_shrink = int(x_max * shrink_ratio)
454
+ y_max_shrink = int(y_max * shrink_ratio)
455
+
456
+ return [on_coords_slider(image_mini, x_min_shrink, y_min_shrink, x_max_shrink, y_max_shrink),
457
+ gr.update(value=x_min, maximum=width),
458
+ gr.update(value=y_min, maximum=height),
459
+ gr.update(value=x_max, maximum=width),
460
+ gr.update(value=y_max, maximum=height)]
461
+
462
+
463
+ def run_demo(
464
+ device_idx=_GPU_INDEX,
465
+ ckpt='zero123-xl.ckpt'):
466
+
467
+ device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
468
+ models = init_model(device, os.path.join(code_dir, ckpt))
469
+
470
+ # init sam model
471
+ predictor = sam_init(device_idx)
472
+
473
+ with open('instructions_12345.md', 'r') as f:
474
+ article = f.read()
475
+
476
+ # NOTE: Examples must match inputs
477
+ example_folder = os.path.join(os.path.dirname(__file__), 'demo_examples')
478
+ example_fns = os.listdir(example_folder)
479
+ example_fns.sort()
480
+ examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
481
+
482
+ # Compose demo layout & data flow.
483
+ with gr.Blocks(title=_TITLE, css="style.css") as demo:
484
+ with gr.Row():
485
+ with gr.Column(scale=1):
486
+ gr.Markdown('# ' + _TITLE)
487
+ with gr.Column(scale=0):
488
+ gr.DuplicateButton(value='Duplicate Space for private use',
489
+ elem_id='duplicate-button')
490
+ gr.Markdown(_DESCRIPTION)
491
+
492
+ with gr.Row(variant='panel'):
493
+ with gr.Column(scale=6):
494
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
495
+
496
+ gr.Examples(
497
+ examples=examples_full, # NOTE: elements must match inputs list!
498
+ inputs=[image_block],
499
+ outputs=[image_block],
500
+ cache_examples=False,
501
+ label='Examples (click one of the images below to start)',
502
+ examples_per_page=40
503
+ )
504
+ preprocess_chk = gr.Checkbox(
505
+ False, label='Reduce image contrast (mitigate shadows on the backside)')
506
+ with gr.Accordion('Advanced options', open=False):
507
+ scale_slider = gr.Slider(0, 30, value=3, step=1,
508
+ label='Diffusion guidance scale')
509
+ steps_slider = gr.Slider(5, 200, value=75, step=5,
510
+ label='Number of diffusion inference steps')
511
+ glb_chk = gr.Checkbox(
512
+ False, label='Export the mesh in .glb format')
513
+
514
+ run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
515
+ guide_text = gr.Markdown(_USER_GUIDE, visible=True)
516
+
517
+ with gr.Column(scale=4):
518
+ with gr.Row():
519
+ bbox_block = gr.Image(type='pil', label="Bounding box", height=290, interactive=False)
520
+ sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
521
+ max_width = max_height = 256
522
+ with gr.Row():
523
+ x_min_slider = gr.Slider(label="X min", interactive=True, value=0, minimum=0, maximum=max_width, step=1)
524
+ y_min_slider = gr.Slider(label="Y min", interactive=True, value=0, minimum=0, maximum=max_height, step=1)
525
+ with gr.Row():
526
+ x_max_slider = gr.Slider(label="X max", interactive=True, value=max_width, minimum=0, maximum=max_width, step=1)
527
+ y_max_slider = gr.Slider(label="Y max", interactive=True, value=max_height, minimum=0, maximum=max_height, step=1)
528
+ bbox_sliders = [x_min_slider, y_min_slider, x_max_slider, y_max_slider]
529
+
530
+ mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="One-2-3-45's Textured Mesh", elem_id="model-3d-out")
531
+
532
+ with gr.Row(variant='panel'):
533
+ with gr.Column(scale=85):
534
+ elev_output = gr.Label(label='Estimated elevation (degree, w.r.t. the horizontal plane)')
535
+ vis_output = gr.Plot(label='Camera poses of the input view (red) and predicted views (blue)', elem_id="plot-out")
536
+
537
+ with gr.Column(scale=115):
538
+ gr.Markdown('Predicted multi-view images')
539
+ with gr.Row():
540
+ view_1 = gr.Image(interactive=False, height=200, show_label=False)
541
+ view_2 = gr.Image(interactive=False, height=200, show_label=False)
542
+ view_3 = gr.Image(interactive=False, height=200, show_label=False)
543
+ view_4 = gr.Image(interactive=False, height=200, show_label=False)
544
+ with gr.Row():
545
+ btn_retry_1 = gr.Checkbox(label='Retry view 1')
546
+ btn_retry_2 = gr.Checkbox(label='Retry view 2')
547
+ btn_retry_3 = gr.Checkbox(label='Retry view 3')
548
+ btn_retry_4 = gr.Checkbox(label='Retry view 4')
549
+ with gr.Row():
550
+ view_5 = gr.Image(interactive=False, height=200, show_label=False)
551
+ view_6 = gr.Image(interactive=False, height=200, show_label=False)
552
+ view_7 = gr.Image(interactive=False, height=200, show_label=False)
553
+ view_8 = gr.Image(interactive=False, height=200, show_label=False)
554
+ with gr.Row():
555
+ btn_retry_5 = gr.Checkbox(label='Retry view 5')
556
+ btn_retry_6 = gr.Checkbox(label='Retry view 6')
557
+ btn_retry_7 = gr.Checkbox(label='Retry view 7')
558
+ btn_retry_8 = gr.Checkbox(label='Retry view 8')
559
+ with gr.Row():
560
+ regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
561
+ regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
562
+
563
+ gr.Markdown(article)
564
+ gr.HTML("""
565
+ <div class="footer">
566
+ <p>
567
+ One-2-3-45 Demo by <a style="text-decoration:none" href="https://chaoxu.xyz" target="_blank">Chao Xu</a>
568
+ </p>
569
+ </div>
570
+ """)
571
+
572
+ update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
573
+
574
+ views = [view_1, view_2, view_3, view_4, view_5, view_6, view_7, view_8]
575
+ btn_retrys = [btn_retry_1, btn_retry_2, btn_retry_3, btn_retry_4, btn_retry_5, btn_retry_6, btn_retry_7, btn_retry_8]
576
+
577
+ rerun_idx = gr.State([])
578
+ tmp_dir = gr.State('./demo_tmp/tmp_dir')
579
+
580
+ def refresh(tmp_dir):
581
+ if os.path.exists(tmp_dir):
582
+ shutil.rmtree(tmp_dir)
583
+ tmp_dir = tempfile.TemporaryDirectory(dir=os.path.join(os.path.dirname(__file__), 'demo_tmp'))
584
+ print("create tmp_dir", tmp_dir.name)
585
+ clear = [gr.update(value=[])] + [None] * 5 + [gr.update(visible=False)] * 2 + [None] * 8 + [gr.update(value=False)] * 8
586
+ return (tmp_dir.name, *clear)
587
+
588
+ placeholder = gr.Image(visible=False)
589
+ tmp_func = lambda x: False if not x else gr.update(visible=False)
590
+ disable_func = lambda x: gr.update(interactive=False)
591
+ enable_func = lambda x: gr.update(interactive=True)
592
+ image_block.change(disable_func, inputs=run_btn, outputs=run_btn, queue=False
593
+ ).success(fn=refresh,
594
+ inputs=[tmp_dir],
595
+ outputs=[tmp_dir, rerun_idx, bbox_block, sam_block, elev_output, vis_output, mesh_output, regen_view_btn, regen_mesh_btn, *views, *btn_retrys],
596
+ queue=False
597
+ ).success(fn=tmp_func, inputs=[image_block], outputs=[placeholder], queue=False
598
+ ).success(fn=partial(update_guide, _BBOX_1), outputs=[guide_text], queue=False
599
+ ).success(fn=init_bbox,
600
+ inputs=[image_block],
601
+ outputs=[bbox_block, *bbox_sliders], queue=False
602
+ ).success(fn=partial(update_guide, _BBOX_3), outputs=[guide_text], queue=False
603
+ ).success(enable_func, inputs=run_btn, outputs=run_btn, queue=False)
604
+
605
+
606
+ for bbox_slider in bbox_sliders:
607
+ bbox_slider.release(fn=on_coords_slider,
608
+ inputs=[image_block, *bbox_sliders],
609
+ outputs=[bbox_block],
610
+ queue=False
611
+ ).success(fn=partial(update_guide, _BBOX_2), outputs=[guide_text], queue=False)
612
+
613
+ cam_vis = CameraVisualizer(vis_output)
614
+
615
+ # Define the function to be called when any of the btn_retry buttons are clicked
616
+ def on_retry_button_click(*btn_retrys):
617
+ any_checked = any([btn_retry for btn_retry in btn_retrys])
618
+ print('any_checked:', any_checked, [btn_retry for btn_retry in btn_retrys])
619
+ if any_checked:
620
+ return (gr.update(visible=True), gr.update(visible=True))
621
+ else:
622
+ return (gr.update(), gr.update())
623
+ # make regen_btn visible when any of the btn_retry is checked
624
+ for btn_retry in btn_retrys:
625
+ # Add the event handlers to the btn_retry buttons
626
+ btn_retry.change(fn=on_retry_button_click, inputs=[*btn_retrys], outputs=[regen_view_btn, regen_mesh_btn], queue=False)
627
+
628
+
629
+ run_btn.click(fn=partial(update_guide, _SAM), outputs=[guide_text], queue=False
630
+ ).success(fn=partial(preprocess_run, predictor, models),
631
+ inputs=[image_block, preprocess_chk, *bbox_sliders],
632
+ outputs=[sam_block]
633
+ ).success(fn=partial(update_guide, _GEN_1), outputs=[guide_text], queue=False
634
+ ).success(fn=partial(stage1_run, models, device, cam_vis),
635
+ inputs=[tmp_dir, sam_block, scale_slider, steps_slider],
636
+ outputs=[elev_output, vis_output, *views]
637
+ ).success(fn=partial(update_guide, _GEN_2), outputs=[guide_text], queue=False
638
+ ).success(fn=partial(stage2_run, models, device),
639
+ inputs=[tmp_dir, elev_output, scale_slider, glb_chk],
640
+ outputs=[mesh_output]
641
+ ).success(fn=partial(update_guide, _DONE), outputs=[guide_text], queue=False)
642
+
643
+
644
+ regen_view_btn.click(fn=partial(stage1_run, models, device, None),
645
+ inputs=[tmp_dir, sam_block, scale_slider, steps_slider, elev_output, rerun_idx, *btn_retrys],
646
+ outputs=[rerun_idx, *btn_retrys, *views]
647
+ ).success(fn=partial(update_guide, _REGEN_1), outputs=[guide_text], queue=False)
648
+ regen_mesh_btn.click(fn=partial(stage2_run, models, device),
649
+ inputs=[tmp_dir, elev_output, scale_slider, glb_chk, rerun_idx],
650
+ outputs=[mesh_output, rerun_idx, regen_view_btn, regen_mesh_btn]
651
+ ).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
652
+
653
+
654
+ demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
655
+
656
+
657
+ if __name__ == '__main__':
658
+ fire.Fire(run_demo)