Upload 2 files
Browse files- app (1).py +73 -0
- requirements.txt +4 -0
app (1).py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit.components.v1 as com
|
3 |
+
#import libraries
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
5 |
+
import numpy as np
|
6 |
+
#convert logits to probabilities
|
7 |
+
from scipy.special import softmax
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
#Set the page configs
|
11 |
+
st.set_page_config(page_title='Sentiments Analysis',page_icon='😎',layout='wide')
|
12 |
+
|
13 |
+
#welcome Animation
|
14 |
+
com.iframe("https://embed.lottiefiles.com/animation/149093")
|
15 |
+
st.markdown("<h1 style='text-align: center'> Covid Vaccine Tweet Sentiments </h1>",unsafe_allow_html=True)
|
16 |
+
st.write("<h2 style='font-size: 24px;'> These models were trained to detect how a user feels about the covid vaccines based on their tweets(text) </h2>",unsafe_allow_html=True)
|
17 |
+
|
18 |
+
#Create a form to take user inputs
|
19 |
+
with st.form(key='tweet',clear_on_submit=True):
|
20 |
+
#input text
|
21 |
+
text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine')
|
22 |
+
#Set examples
|
23 |
+
alt_text=st.selectbox("Can't Type? Select an Example below",('I hate the vaccines','Vaccines made from dead human tissues','Take the vaccines or regret the consequences','Covid is a Hoax','Making the vaccines is a huge step forward for humanity. Just take them'))
|
24 |
+
#Select a model
|
25 |
+
models={'Bert':'UholoDala/tweet_sentiments_analysis_bert',
|
26 |
+
'Distilbert':'UholoDala/tweet_sentiments_analysis_distilbert',
|
27 |
+
'Roberta':'UholoDala/tweet_sentiments_analysis_roberta'}
|
28 |
+
model=st.selectbox('Which model would you want to Use?',('Bert','Distilbert','Roberta'))
|
29 |
+
#Submit
|
30 |
+
submit=st.form_submit_button('Predict','Continue processing input')
|
31 |
+
|
32 |
+
selected_model=models[model]
|
33 |
+
|
34 |
+
|
35 |
+
#create columns to show outputs
|
36 |
+
col1,col2,col3=st.columns(3)
|
37 |
+
col1.write('<h2 style="font-size: 24px;"> Sentiment Emoji </h2>',unsafe_allow_html=True)
|
38 |
+
col2.write('<h2 style="font-size: 24px;"> How this user feels about the vaccine </h2>',unsafe_allow_html=True)
|
39 |
+
col3.write('<h2 style="font-size: 24px;"> Confidence of this prediction </h2>',unsafe_allow_html=True)
|
40 |
+
|
41 |
+
if submit:
|
42 |
+
#Check text
|
43 |
+
if text=="":
|
44 |
+
text=alt_text
|
45 |
+
st.success(f"input text is set to '{text}'")
|
46 |
+
else:
|
47 |
+
st.success('Text received',icon='✅')
|
48 |
+
|
49 |
+
#import the model
|
50 |
+
pipe=pipeline(model=selected_model)
|
51 |
+
|
52 |
+
#pass text to model
|
53 |
+
output=pipe(text)
|
54 |
+
output_dict=output[0]
|
55 |
+
lable=output_dict['label']
|
56 |
+
score=output_dict['score']
|
57 |
+
|
58 |
+
#output
|
59 |
+
if lable=='NEGATIVE' or lable=='LABEL_0':
|
60 |
+
with col1:
|
61 |
+
com.iframe("https://embed.lottiefiles.com/animation/125694")
|
62 |
+
col2.write('NEGATIVE')
|
63 |
+
col3.write(f'{score:.2%}')
|
64 |
+
elif lable=='POSITIVE'or lable=='LABEL_2':
|
65 |
+
with col1:
|
66 |
+
com.iframe("https://embed.lottiefiles.com/animation/148485")
|
67 |
+
col2.write('POSITIVE')
|
68 |
+
col3.write(f'{score:.2%}')
|
69 |
+
else:
|
70 |
+
with col1:
|
71 |
+
com.iframe("https://embed.lottiefiles.com/animation/136052")
|
72 |
+
col2.write('NEUTRAL')
|
73 |
+
col3.write(f'{score:.2%}')
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
transformers[torch]
|
4 |
+
Scipy
|