Spaces:
Running
Running
File size: 1,198 Bytes
3132d5e 10ee73c 3132d5e 157808e 10ee73c 3132d5e 950f514 e157acb 3132d5e 10ee73c e157acb 10ee73c e157acb 10ee73c 950f514 10ee73c 3132d5e 10ee73c 3132d5e 157808e 3132d5e 10ee73c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import sqlite3
import torch
app = FastAPI()
# Load the DeepSeek model and tokenizer
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32).to("cpu")
class ChatRequest(BaseModel):
message: str
def generate_sql_query(user_input: str) -> str:
"""
Generate an SQL query from a natural language query using the DeepSeek model.
"""
inputs = tokenizer(user_input, return_tensors="pt", padding="longest", truncation=True)
outputs = model.generate(**inputs, max_length=400, do_sample=False, num_beams=1)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
return sql_query
@app.post("/chat")
def chat(request: ChatRequest):
user_input = request.message
sql_query = generate_sql_query(user_input)
print(f"Generated SQL Query: {sql_query}")
return {"response": sql_query}
@app.get("/")
def home():
return {"message": "DeepSeek SQL Query API is running"} |