Spaces:
Runtime error
Runtime error
File size: 9,649 Bytes
b115d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
from __future__ import annotations
import json
from typing import Any, Dict, List, Optional, Type, Union
from pydantic import BaseModel, Field
from steamship import SteamshipError
from steamship.base import Task
from steamship.base.client import Client
from steamship.base.model import CamelModel
from steamship.base.request import DeleteRequest, Request
from steamship.base.response import Response
from steamship.data.search import Hit
from steamship.utils.metadata import metadata_to_str
MAX_RECOMMENDED_ITEM_LENGTH = 5000
class EmbedAndSearchRequest(Request):
query: str
docs: List[str]
plugin_instance: str
k: int = 1
class QueryResult(CamelModel):
value: Optional[Hit] = None
score: Optional[float] = None
index: Optional[int] = None
id: Optional[str] = None
class QueryResults(Request):
items: List[QueryResult] = None
class EmbeddedItem(CamelModel):
id: str = None
index_id: str = None
file_id: str = None
block_id: str = None
tag_id: str = None
value: str = None
external_id: str = None
external_type: str = None
metadata: Any = None
embedding: List[float] = None
def clone_for_insert(self) -> EmbeddedItem:
"""Produces a clone with a string representation of the metadata"""
ret = EmbeddedItem(
id=self.id,
index_id=self.index_id,
file_id=self.file_id,
block_id=self.block_id,
tag_id=self.tag_id,
value=self.value,
external_id=self.external_id,
external_type=self.external_type,
metadata=self.metadata,
embedding=self.embedding,
)
if isinstance(ret.metadata, dict) or isinstance(ret.metadata, list):
ret.metadata = json.dumps(ret.metadata)
return ret
class IndexCreateRequest(Request):
handle: str = None
name: str = None
plugin_instance: str = None
fetch_if_exists: bool = True
external_id: str = None
external_type: str = None
metadata: Any = None
class IndexInsertRequest(Request):
index_id: str
items: List[EmbeddedItem] = None
value: str = None
file_id: str = None
block_type: str = None
external_id: str = None
external_type: str = None
metadata: Any = None
reindex: bool = True
class IndexItemId(CamelModel):
index_id: str = None
id: str = None
class IndexInsertResponse(Response):
item_ids: List[IndexItemId] = None
class IndexEmbedRequest(Request):
id: str
class IndexEmbedResponse(Response):
id: Optional[str] = None
class IndexSearchRequest(Request):
id: str
query: str = None
queries: List[str] = None
k: int = 1
include_metadata: bool = False
class ListItemsRequest(Request):
id: str = None
file_id: str = None
block_id: str = None
span_id: str = None
class ListItemsResponse(Response):
items: List[EmbeddedItem]
class EmbeddingIndex(CamelModel):
"""A persistent, read-optimized index over embeddings."""
client: Client = Field(None, exclude=True)
id: str = None
handle: str = None
name: str = None
plugin: str = None
external_id: str = None
external_type: str = None
metadata: str = None
@classmethod
def parse_obj(cls: Type[BaseModel], obj: Any) -> BaseModel:
# TODO (enias): This needs to be solved at the engine side
if "embeddingIndex" in obj:
obj = obj["embeddingIndex"]
elif "index" in obj:
obj = obj["index"]
return super().parse_obj(obj)
def insert_file(
self,
file_id: str,
block_type: str = None,
external_id: str = None,
external_type: str = None,
metadata: Union[int, float, bool, str, List, Dict] = None,
reindex: bool = True,
) -> IndexInsertResponse:
if isinstance(metadata, dict) or isinstance(metadata, list):
metadata = json.dumps(metadata)
req = IndexInsertRequest(
index_id=self.id,
file_id=file_id,
blockType=block_type,
external_id=external_id,
external_type=external_type,
metadata=metadata,
reindex=reindex,
)
return self.client.post(
"embedding-index/item/create",
req,
expect=IndexInsertResponse,
)
def _check_input(self, request: IndexInsertRequest, allow_long_records: bool):
if not allow_long_records:
if request.value is not None and len(request.value) > MAX_RECOMMENDED_ITEM_LENGTH:
raise SteamshipError(
f"Inserted item of length {len(request.value)} exceeded maximum recommended length of {MAX_RECOMMENDED_ITEM_LENGTH} characters. You may insert it anyway by passing allow_long_records=True."
)
if request.items is not None:
for i, item in enumerate(request.items):
if item is not None:
if isinstance(item, str) and len(item) > MAX_RECOMMENDED_ITEM_LENGTH:
raise SteamshipError(
f"Inserted item {i} of length {len(item)} exceeded maximum recommended length of {MAX_RECOMMENDED_ITEM_LENGTH} characters. You may insert it anyway by passing allow_long_records=True."
)
if (
isinstance(item, EmbeddedItem)
and item.value is not None
and len(item.value) > MAX_RECOMMENDED_ITEM_LENGTH
):
raise SteamshipError(
f"Inserted item {i} of length {len(item.value)} exceeded maximum recommended length of {MAX_RECOMMENDED_ITEM_LENGTH} characters. You may insert it anyway by passing allow_long_records=True."
)
def insert_many(
self,
items: List[Union[EmbeddedItem, str]],
reindex: bool = True,
allow_long_records=False,
) -> IndexInsertResponse:
new_items = []
for item in items:
if isinstance(item, str):
new_items.append(EmbeddedItem(value=item))
else:
new_items.append(item)
req = IndexInsertRequest(
index_id=self.id,
items=[item.clone_for_insert() for item in new_items],
reindex=reindex,
)
self._check_input(req, allow_long_records)
return self.client.post(
"embedding-index/item/create",
req,
expect=IndexInsertResponse,
)
def insert(
self,
value: str,
external_id: str = None,
external_type: str = None,
metadata: Union[int, float, bool, str, List, Dict] = None,
reindex: bool = True,
allow_long_records=False,
) -> IndexInsertResponse:
req = IndexInsertRequest(
index_id=self.id,
value=value,
external_id=external_id,
external_type=external_type,
metadata=metadata_to_str(metadata),
reindex=reindex,
)
self._check_input(req, allow_long_records)
return self.client.post(
"embedding-index/item/create",
req,
expect=IndexInsertResponse,
)
def embed(
self,
) -> Task[IndexEmbedResponse]:
req = IndexEmbedRequest(id=self.id)
return self.client.post(
"embedding-index/embed",
req,
expect=IndexEmbedResponse,
)
def list_items(
self,
file_id: str = None,
block_id: str = None,
span_id: str = None,
) -> ListItemsResponse:
req = ListItemsRequest(id=self.id, file_id=file_id, block_id=block_id, spanId=span_id)
return self.client.post(
"embedding-index/item/list",
req,
expect=ListItemsResponse,
)
def delete(self) -> EmbeddingIndex:
return self.client.post(
"embedding-index/delete",
DeleteRequest(id=self.id),
expect=EmbeddingIndex,
)
def search(
self,
query: Union[str, List[str]],
k: int = 1,
include_metadata: bool = False,
) -> Task[QueryResults]:
if isinstance(query, list):
req = IndexSearchRequest(
id=self.id, queries=query, k=k, include_metadata=include_metadata
)
else:
req = IndexSearchRequest(
id=self.id, query=query, k=k, include_metadata=include_metadata
)
ret = self.client.post(
"embedding-index/search",
req,
expect=QueryResults,
)
return ret
@staticmethod
def create(
client: Client,
handle: str = None,
name: str = None,
embedder_plugin_instance_handle: str = None,
fetch_if_exists: bool = True,
external_id: str = None,
external_type: str = None,
metadata: Any = None,
) -> EmbeddingIndex:
req = IndexCreateRequest(
handle=handle,
name=name,
plugin_instance=embedder_plugin_instance_handle,
fetch_if_exists=fetch_if_exists,
external_id=external_id,
external_type=external_type,
metadata=metadata,
)
return client.post(
"embedding-index/create",
req,
expect=EmbeddingIndex,
)
|