Spaces:
Runtime error
Runtime error
File size: 7,717 Bytes
b115d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from typing import Any, Dict, List, Optional, Union, cast
from pydantic import Field
from steamship.base.client import Client
from steamship.base.error import SteamshipError
from steamship.base.model import CamelModel
from steamship.base.tasks import Task
from steamship.data.embeddings import EmbeddedItem, EmbeddingIndex, QueryResult, QueryResults
from steamship.data.plugin.plugin_instance import PluginInstance
from steamship.data.tags.tag import Tag
class EmbedderInvocation(CamelModel):
"""The parameters capable of creating/fetching an Embedder (Tagger) Plugin Instance."""
plugin_handle: str
instance_handle: Optional[str] = None
config: Optional[Dict[str, Any]] = None
version: Optional[str] = None
fetch_if_exists: bool = True
class SearchResult(CamelModel):
"""A single scored search result -- which is always a tag.
This class is intended to eventually replace the QueryResult object currently used with the Embedding layer."""
tag: Optional[Tag] = None
score: Optional[float] = None
@staticmethod
def from_query_result(query_result: QueryResult) -> "SearchResult":
hit = query_result.value
value = hit.metadata or {}
# To make this change Python-only, some fields are stached in `hit.metadata`.
# This has the temporary consequence of these keys not being safe. This will be resolved when we spread
# this refactor to the engine.
block_id = None
if "_block_id" in value:
block_id = value.get("_block_id")
del value["_block_id"]
file_id = None
if "_file_id" in value:
file_id = value.get("_file_id")
del value["_file_id"]
tag_id = None
if "_tag_id" in value:
tag_id = value.get("_tag_id")
del value["_tag_id"]
tag = Tag(
id=hit.id,
kind=hit.external_type,
name=hit.external_id,
block_id=block_id,
tag_id=tag_id,
file_id=file_id,
text=hit.value,
value=value,
)
return SearchResult(tag=tag, score=query_result.score)
class SearchResults(CamelModel):
"""Results of a search operation -- which is always a list of ranked tag.
This class is intended to eventually replace the QueryResults object currently used with the Embedding layer.
TODO: add in paging support."""
items: List[SearchResult] = None
@staticmethod
def from_query_results(query_results: QueryResults) -> "SearchResults":
items = [SearchResult.from_query_result(qr) for qr in query_results.items or []]
return SearchResults(items=items)
class EmbeddingIndexPluginInstance(PluginInstance):
"""A persistent, read-optimized index over embeddings.
This is currently implemented as an object which behaves like a PluginInstance even though
it isn't from an implementation perspective on the back-end.
"""
client: Client = Field(None, exclude=True)
embedder: PluginInstance = Field(None, exclude=True)
index: EmbeddingIndex = Field(None, exclude=True)
def delete(self):
"""Delete the EmbeddingIndexPluginInstnace.
For now, we will have this correspond to deleting the `index` but not the `embedder`. This is likely
a temporary design.
"""
return self.index.delete()
def insert(self, tags: Union[Tag, List[Tag]], allow_long_records: bool = False):
"""Insert tags into the embedding index."""
# Make a list if a single tag was provided
if isinstance(tags, Tag):
tags = [tags]
for tag in tags:
if not tag.text:
raise SteamshipError(
message="Please set the `text` field of your Tag before inserting it into an index."
)
# Now we need to prepare an EmbeddingIndexItem of a particular shape that encodes the tag.
metadata = tag.value or {}
if not isinstance(metadata, dict):
raise SteamshipError(
"Only Tags with a dict or None value can be embedded. "
+ f"This tag had a value of type: {type(tag.value)}"
)
# To make this change Python-only, some fields are stached in `hit.metadata`.
# This has the temporary consequence of these keys not being safe. This will be resolved when we spread
# this refactor to the engine.
metadata["_file_id"] = tag.file_id
metadata["_tag_id"] = tag.id
metadata["_block_id"] = tag.block_id
tag.value = metadata
embedded_items = [
EmbeddedItem(
value=tag.text,
external_id=tag.name,
external_type=tag.kind,
metadata=tag.value,
)
for tag in tags
]
# We always reindex in this new style; to not do so is to expose details (when embedding occurrs) we'd rather
# not have users exercise control over.
self.index.insert_many(embedded_items, reindex=True, allow_long_records=allow_long_records)
def search(self, query: str, k: Optional[int] = None) -> Task[SearchResults]:
"""Search the embedding index.
This wrapper implementation simply projects the `Hit` data structure into a `Tag`
"""
if query is None or len(query.strip()) == 0:
raise SteamshipError(message="Query field must be non-empty.")
# Metadata will always be included; this is the equivalent of Tag.value
wrapped_result = self.index.search(query, k=k, include_metadata=True)
# For now, we'll have to do this synchronously since we're trying to avoid changing things on the engine.
wrapped_result.wait()
# We're going to do a switcheroo on the output type of Task here.
search_results = SearchResults.from_query_results(wrapped_result.output)
wrapped_result.output = search_results
# Return the index's search result, but projected into the data structure of Tags
return cast(Task[SearchResults], wrapped_result)
@staticmethod
def create(
client: Any,
plugin_id: str = None,
plugin_handle: str = None,
plugin_version_id: str = None,
plugin_version_handle: str = None,
handle: str = None,
fetch_if_exists: bool = True,
config: Dict[str, Any] = None,
) -> "EmbeddingIndexPluginInstance":
"""Create a class that simulates an embedding index re-implemented as a PluginInstance."""
# Perform a manual config validation check since the configuration isn't actually being sent up to the Engine.
# In this case, an embedding index has special behavior which is to instantiate/fetch an Embedder that it can use.
if "embedder" not in config:
raise SteamshipError(
message="Config key missing. Please include a field named `embedder` with type `EmbedderInvocation`."
)
# Just for pydantic validation.
embedder_invocation = EmbedderInvocation.parse_obj(config["embedder"])
# Create the embedder
embedder = client.use_plugin(**embedder_invocation.dict())
# Create the index
index = EmbeddingIndex.create(
client=client,
handle=handle,
embedder_plugin_instance_handle=embedder.handle,
fetch_if_exists=fetch_if_exists,
)
# Now return the plugin wrapper
return EmbeddingIndexPluginInstance(
id=index.id, handle=index.handle, index=index, embedder=embedder
)
|