Spaces:
Runtime error
Runtime error
File size: 6,865 Bytes
b115d50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
from __future__ import annotations
from typing import Any, Dict, Optional, Type, Union
from pydantic import BaseModel, Field
from steamship.base import Task
from steamship.base.client import Client
from steamship.base.model import CamelModel
from steamship.base.request import DeleteRequest, IdentifierRequest, Request
from steamship.data.block import Block
from steamship.data.file import File
from steamship.data.operations.generator import GenerateRequest, GenerateResponse
from steamship.data.operations.tagger import TagRequest, TagResponse
from steamship.data.plugin import (
HostingCpu,
HostingEnvironment,
HostingMemory,
HostingTimeout,
HostingType,
)
from steamship.plugin.inputs.export_plugin_input import ExportPluginInput
from steamship.plugin.inputs.training_parameter_plugin_input import TrainingParameterPluginInput
from steamship.plugin.outputs.train_plugin_output import TrainPluginOutput
from steamship.plugin.outputs.training_parameter_plugin_output import TrainingParameterPluginOutput
class CreatePluginInstanceRequest(Request):
id: str = None
plugin_id: str = None
plugin_handle: str = None
plugin_version_id: str = None
plugin_version_handle: str = None
handle: str = None
fetch_if_exists: bool = None
config: Dict[str, Any] = None
SIGNED_URL_EXPORTER_INSTANCE_HANDLE = "signed-url-exporter-1.0"
class PluginInstance(CamelModel):
client: Client = Field(None, exclude=True)
id: str = None
handle: str = None
plugin_id: str = None
plugin_version_id: str = None
plugin_handle: Optional[str] = None
plugin_version_handle: Optional[str] = None
workspace_id: Optional[str] = None
user_id: str = None
config: Dict[str, Any] = None
hosting_type: Optional[HostingType] = None
hosting_cpu: Optional[HostingCpu] = None
hosting_memory: Optional[HostingMemory] = None
hosting_timeout: Optional[HostingTimeout] = None
hosting_environment: Optional[HostingEnvironment] = None
@classmethod
def parse_obj(cls: Type[BaseModel], obj: Any) -> BaseModel:
# TODO (enias): This needs to be solved at the engine side
obj = obj["pluginInstance"] if "pluginInstance" in obj else obj
return super().parse_obj(obj)
@staticmethod
def create(
client: Client,
plugin_id: str = None,
plugin_handle: str = None,
plugin_version_id: str = None,
plugin_version_handle: str = None,
handle: str = None,
fetch_if_exists: bool = True,
config: Dict[str, Any] = None,
) -> PluginInstance:
"""Create a plugin instance
When handle is empty the engine will automatically assign one
fetch_if_exists controls whether we want to re-use an existing plugin instance or not."""
req = CreatePluginInstanceRequest(
handle=handle,
plugin_id=plugin_id,
plugin_handle=plugin_handle,
plugin_version_id=plugin_version_id,
plugin_version_handle=plugin_version_handle,
fetch_if_exists=fetch_if_exists,
config=config,
)
return client.post("plugin/instance/create", payload=req, expect=PluginInstance)
@staticmethod
def get(client: Client, handle: str) -> PluginInstance:
return client.post(
"plugin/instance/get", IdentifierRequest(handle=handle), expect=PluginInstance
)
def tag(
self,
doc: Union[str, File],
) -> Task[
TagResponse
]: # TODO (enias): Should we remove this helper function in favor of always working with files?
req = TagRequest(
type="inline",
file=File(blocks=[Block(text=doc)]) if isinstance(doc, str) else doc,
plugin_instance=self.handle,
)
return self.client.post(
"plugin/instance/tag",
req,
expect=TagResponse,
)
def generate(
self,
input_file_id: str = None,
input_file_start_block_index: int = None,
input_file_end_block_index: Optional[int] = None,
text: Optional[str] = None,
# bytes: Optional[bytes] = None, [Not yet implemented]
block_query: Optional[str] = None,
# url: Optional[str] = None, [Not yet implemented]
append_output_to_file: bool = False,
output_file_id: Optional[str] = None,
options: Optional[dict] = None,
):
req = GenerateRequest(
plugin_instance=self.handle,
input_file_id=input_file_id,
input_file_start_block_index=input_file_start_block_index,
input_file_end_block_index=input_file_end_block_index,
text=text,
# bytes=bytes,
block_query=block_query,
# url=url,
append_output_to_file=append_output_to_file,
output_file_id=output_file_id,
options=options,
)
return self.client.post("plugin/instance/generate", req, expect=GenerateResponse)
def delete(self) -> PluginInstance:
req = DeleteRequest(id=self.id)
return self.client.post("plugin/instance/delete", payload=req, expect=PluginInstance)
def train(
self,
training_request: TrainingParameterPluginInput = None,
training_epochs: Optional[int] = None,
export_query: Optional[str] = None,
testing_holdout_percent: Optional[float] = None,
test_split_seed: Optional[int] = None,
training_params: Optional[Dict] = None,
inference_params: Optional[Dict] = None,
) -> Task[TrainPluginOutput]:
"""Train a plugin instance. Please provide either training_request OR the other parameters; passing
training_request ignores all other parameters, but is kept for backwards compatibility.
"""
input_params = training_request or TrainingParameterPluginInput(
plugin_instance=self.handle,
training_epochs=training_epochs,
export_plugin_input=ExportPluginInput(
plugin_instance=SIGNED_URL_EXPORTER_INSTANCE_HANDLE, type="file", query=export_query
),
testing_holdout_percent=testing_holdout_percent,
test_split_seed=test_split_seed,
training_params=training_params,
inference_params=inference_params,
)
return self.client.post(
"plugin/instance/train",
payload=input_params,
expect=TrainPluginOutput,
)
def get_training_parameters(
self, training_request: TrainingParameterPluginInput
) -> TrainingParameterPluginOutput:
return self.client.post(
"plugin/instance/getTrainingParameters",
payload=training_request,
expect=TrainingParameterPluginOutput,
)
|