File size: 11,898 Bytes
fcdbf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da442e3
fcdbf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092977e
 
fcdbf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import copy
import random
from PIL import Image

import torch
import matplotlib.pyplot as plt
import numpy as np
from plyfile import PlyData

from segment_anything import SamPredictor, sam_model_registry

def get_image_ids(path):
    files = os.listdir(path)
    files = [f.split('.')[0] for f in files if os.path.isfile(path+'/'+f)] #Filtering only the files.
    return sorted(files)

def load_align_matrix_from_txt(path):
    lines = open(path).readlines()
    # test set data doesn't have align_matrix
    axis_align_matrix = np.eye(4)
    for line in lines:
        if 'axisAlignment' in line:
            axis_align_matrix = [
                float(x)
                for x in line.rstrip().strip('axisAlignment = ').split(' ')
            ]
            break
    axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))
    return axis_align_matrix

def load_matrix_from_txt(path, shape=(4, 4)):
    with open(path) as f:
        txt = f.readlines()
    txt = ''.join(txt).replace('\n', ' ')
    matrix = [float(v) for v in txt.split()]
    return np.array(matrix).reshape(shape)

def load_image(path):
    image = Image.open(path)
    return np.array(image)

def convert_from_uvd(u, v, d, intr, pose, align):
    extr = np.linalg.inv(pose)
    if d == 0:
        return None, None, None
    
    fx = intr[0, 0]
    fy = intr[1, 1]
    cx = intr[0, 2]
    cy = intr[1, 2]
    depth_scale = 1000
    
    z = d / depth_scale
    x = (u - cx) * z / fx
    y = (v - cy) * z / fy
    
    world = (align @ pose @ np.array([x, y, z, 1]))
    return world[:3] / world[3]

# Find the cloest point in the cloud with select
def find_closest_point(point, point_cloud, num=1):
    # calculate the Euclidean distances between the input vector and each row of the matrix
    distances = np.linalg.norm(point_cloud - point, axis=1)

    # find the index of the row with the minimum distance
    closest_index = np.argsort(distances)[:num]

    # get the closest vector from the matrix
    closest_vector = point_cloud[closest_index]
    
    return closest_index, closest_vector
    
def plot_3d(xdata, ydata, zdata, color=None, b_min=2, b_max=8, view=(45, 45)):
        fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, dpi=200)
        ax.view_init(view[0], view[1])
        ax.set_xlim(b_min, b_max)
        ax.set_ylim(b_min, b_max)
        ax.set_zlim(b_min, b_max)
        ax.scatter3D(xdata, ydata, zdata, c=color, cmap='rgb', s=0.1)

class SAM3DDemo(object):
    def __init__(self, sam_model, sam_ckpt, scene_name):
        sam = sam_model_registry[sam_model](checkpoint=sam_ckpt)
        self.predictor = SamPredictor(sam)
        self.scene_name = scene_name
        scene_path = os.path.join('./scannet_data', scene_name)
        self.color_path = os.path.join(scene_path, 'color')
        self.depth_path = os.path.join(scene_path, 'depth')
        self.pose_path = os.path.join(scene_path, 'pose')
        self.intrinsic_path = os.path.join(scene_path, 'intrinsic')
        self.align_matirx_path = f'{scene_path}/{scene_name}.txt'
        self.img_ids = get_image_ids(self.color_path)
        self.align_matrix = load_align_matrix_from_txt(self.align_matirx_path)
        self.intrinsic_depth = load_matrix_from_txt(os.path.join(self.intrinsic_path, 'intrinsic_depth.txt'))
        self.poses = [load_matrix_from_txt(os.path.join(self.pose_path, f'{i}.txt')) for i in self.img_ids]
        self.rgb_images = [load_image(os.path.join(self.color_path, f'{i}.jpg')) for i in self.img_ids]
        self.depth_images = [load_image(os.path.join(self.depth_path, f'{i}.png'))for i in self.img_ids]

    def project_3D_to_images(self, select_points, valid_margin=20):
        valid_img_ids = []
        valid_points = {}
        for img_i in range(len(self.img_ids)):
            rgb_img = self.rgb_images[img_i]
            depth_img = self.depth_images[img_i]
            extrinsics = self.poses[img_i]
            projection_matrix = self.intrinsic_depth @ np.linalg.inv(self.align_matrix @ extrinsics)
            raw_points = np.vstack((select_points.T, np.ones((1, select_points.T.shape[1]))))
            raw_points = np.dot(projection_matrix, raw_points)
            # bounding simplest 
            points = raw_points[:2, :] / raw_points[2, :]
            points = np.round(points).astype(np.int32)
            valid = (points[0] >= valid_margin).all() & (points[1] >= valid_margin).all() \
                & (points[0] < (rgb_img.shape[1] - valid_margin)).all() & (points[1] < (rgb_img.shape[0] - valid_margin)).all() \
                & (raw_points[2, :] > 0).all()
            if valid:
                depth_margin = 0.4
                gt_depths = depth_img[points[1], points[0]] / 1000
                proj_depths = raw_points[2, :]
                if (proj_depths[0] > (1 - depth_margin / 2.0) * gt_depths[0]) & (proj_depths[0] < (1 + depth_margin / 2.0) * gt_depths[0]):
                    valid_img_ids.append(img_i)
                    valid_points[img_i] = points

        show_id = valid_img_ids[-1]
        show_points = valid_points[show_id]
        rgb_img = self.rgb_images[show_id]
        fig, ax = plt.subplots()
        ax.imshow(rgb_img)
        for x, y  in zip(show_points[0], show_points[1]):
            ax.plot(x, y, 'ro')
        canvas = fig.canvas
        canvas.draw()
        w, h = canvas.get_width_height()
        rgb_img_w_points = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(h, w, 3)
        print("projecting 3D point to images successfully...")
        return valid_img_ids, valid_points, rgb_img_w_points

    def process_img_w_sam(self, valid_img_ids, valid_points, granularity):
        mask_colors = []
        for img_i in range(len(self.img_ids)):
            rgb_img = self.rgb_images[img_i]
            msk_color = np.full(rgb_img.shape, 0.5)
            if img_i in valid_img_ids:
                self.predictor.set_image(rgb_img)
                point_coor = valid_points[img_i].T[0][None]
                masks, _, _ = self.predictor.predict(point_coords=point_coor, point_labels=np.array([1]))
                # fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(10, 5))
                # for i in range(3):
                #     mask_img = masks[i][:,:,None] * rgb_img
                #     axs[i].set_title(f'granularity {i}')
                #     axs[i].imshow(mask_img)
                m = masks[granularity]
                msk_color[m] = [0, 0, 1.0]
            mask_colors.append(msk_color)
        show_id = valid_img_ids[-1]
        rgb_img = self.rgb_images[show_id]
        fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(24, 8))
        for i in range(3):
            mask_img = masks[i][:,:,None] * rgb_img
            axs[i].set_title(f'granularity {i}')
            axs[i].imshow(mask_img)
        canvas = fig.canvas
        canvas.draw()
        w, h = canvas.get_width_height()
        rgb_img_w_masks = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(h, w, 3)
        print("processing images with SAM successfully...")
        return mask_colors, rgb_img_w_masks

    def project_mask_to_3d(self, mask_colors, sample_ratio=0.002):
        x_data, y_data, z_data, c_data = [], [], [], []
        for img_i in range(len(self.img_ids)):
            id = self.img_ids[img_i]
            # RGBD 
            d = self.depth_images[img_i]
            c = self.rgb_images[img_i]
            p = self.poses[img_i]
            msk_color = mask_colors[img_i]
            # Projecting RGB features into the point space
            for i in range(d.shape[0]):
                for j in range(d.shape[1]):
                    if random.random() < sample_ratio:
                        x, y, z = convert_from_uvd(j, i, d[i, j], self.intrinsic_depth, p, self.align_matrix)
                        if x is None:
                            continue
                        x_data.append(x)
                        y_data.append(y)
                        z_data.append(z)
                        ci = int(i * c.shape[0] / d.shape[0])
                        cj = int(j * c.shape[1] / d.shape[1])
                        c_data.append([msk_color[ci, cj]])
        print("reprojecting images to 3D points successfully...")
        return x_data, y_data, z_data, c_data

    def match_projected_point_to_gt_point(self, x_data, y_data, z_data, c_data, gt_coords):

        c_data = torch.tensor(np.concatenate(c_data, axis=0))
        img_coords = np.array([x_data, y_data, z_data], dtype=np.float32).T
        gt_quant_coords = np.floor_divide(gt_coords, 0.2)
        img_quant_coords = np.floor_divide(img_coords, 0.2)

        # Remove the reduandant coords
        unique_gt_coords, gt_inverse_indices = np.unique(gt_quant_coords, axis=0, return_inverse=True)
        unique_img_coords, img_inverse_indices = np.unique(img_quant_coords, axis=0, return_inverse=True)

        # Match the coords in gt_coords to img_corrds
        def find_loc(vec):
            obj = np.empty((), dtype=object)
            out = np.where((unique_img_coords == vec).all(1))[0]
            obj[()] = out
            return obj
        
        gt_2_img_map = np.apply_along_axis(find_loc, 1, unique_gt_coords)
        # Since some places are empty, using the simple round interplation
        gt_2_img_map_filled = []
        start_id = np.array([0])
        for loc in gt_2_img_map:
            if not np.any(loc):
                loc = start_id
            else:
                start_id = loc
            gt_2_img_map_filled.append(int(loc))
        
        mean_colors = []
        for i in range(unique_img_coords.shape[0]):
            valid_locs = np.where(img_inverse_indices == i)
            mean_f = torch.mean(c_data[valid_locs], axis=0)
            # mean_f, _ = torch.mode(c_data[valid_locs], dim=0)
            mean_colors.append(mean_f.unsqueeze(0))
        mean_colors = torch.cat(mean_colors)
        # Project the averaged features back to groundtruth point clouds
        img_2_gt_colors = mean_colors[gt_2_img_map_filled]
        projected_gt_colors = img_2_gt_colors[gt_inverse_indices]
        print("convert projected points to GT points successfully...")

        return projected_gt_colors
    
    def render_point_cloud(self, data, color):
        data_copy = copy.copy(data)
        uint_color = torch.round(torch.tensor(color) * 255).to(torch.uint8)
        data_copy['red'] = uint_color[:, 0]
        data_copy['green'] = uint_color[:, 1]
        data_copy['blue'] = uint_color[:, 2]
        return data_copy
    
    def run_with_coord(self, point, granularity):
        x_data, y_data, z_data, c_data = [], [], [], []

        plydata = PlyData.read(f"./scannet_data/{self.scene_name}/{self.scene_name}.ply")
        data = plydata.elements[0].data

        # gt_coords stand for the groudtruth point clouds coordinates 
        gt_coords = np.array([data['x'], data['y'], data['z']], dtype=np.float32).T
        gt_color = np.array([data['red'], data['green'], data['blue']], dtype=np.float32).T
        blank_color = np.full(gt_color.shape, 0.5)

        select_index, select_points = find_closest_point(point, gt_coords, num=10)
        point_select_color = blank_color.copy()
        point_select_color[select_index] = [1.0, 0, 0]
        data_point_select = self.render_point_cloud(data, point_select_color)

        valid_img_ids, valid_points, rgb_img_w_points = self.project_3D_to_images(select_points)
        mask_colors, rgb_img_w_masks = self.process_img_w_sam(valid_img_ids, valid_points, granularity)
        x_data, y_data, z_data, c_data = self.project_mask_to_3d(mask_colors)
        projected_gt_colors = self.match_projected_point_to_gt_point(x_data, y_data, z_data, c_data, gt_coords)
        
        data_final = self.render_point_cloud(data, projected_gt_colors)

        return data_point_select, rgb_img_w_points, rgb_img_w_masks, data_final