Spaces:
Sleeping
Sleeping
Jeff Myers II
commited on
Commit
·
ef17b91
1
Parent(s):
f24da04
Completed Prototype
Browse files
Gemma.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, Gemma3ForCausalLM
|
|
|
|
| 2 |
from huggingface_hub import login
|
| 3 |
import spaces
|
| 4 |
import torch
|
|
@@ -14,30 +15,32 @@ class GemmaLLM:
|
|
| 14 |
|
| 15 |
model_id = "google/gemma-3-1b-it"
|
| 16 |
|
| 17 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 18 |
-
self.model = Gemma3ForCausalLM.from_pretrained(
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
).eval()
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
self.model = self.model.bfloat16()
|
| 25 |
-
|
| 26 |
@spaces.GPU
|
| 27 |
def generate(self, message) -> str:
|
| 28 |
-
inputs = self.tokenizer.apply_chat_template(
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
).to(self.model.device)
|
| 35 |
|
| 36 |
-
input_length = inputs["input_ids"].shape[1]
|
| 37 |
|
| 38 |
-
with torch.inference_mode():
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
return outputs
|
| 43 |
|
|
|
|
| 1 |
+
# from transformers import AutoTokenizer, Gemma3ForCausalLM
|
| 2 |
+
from transformers import pipeline
|
| 3 |
from huggingface_hub import login
|
| 4 |
import spaces
|
| 5 |
import torch
|
|
|
|
| 15 |
|
| 16 |
model_id = "google/gemma-3-1b-it"
|
| 17 |
|
| 18 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 19 |
+
# self.model = Gemma3ForCausalLM.from_pretrained(
|
| 20 |
+
# model_id,
|
| 21 |
+
# device_map="cuda" if torch.cuda.is_available() else "cpu",
|
| 22 |
+
# torch_dtype=torch.float16,
|
| 23 |
+
# ).eval()
|
| 24 |
+
|
| 25 |
+
self.model = pipeline("text-generation", model=model_id, torch_dtype=torch.bfloat16, device="cuda")
|
| 26 |
|
|
|
|
|
|
|
| 27 |
@spaces.GPU
|
| 28 |
def generate(self, message) -> str:
|
| 29 |
+
# inputs = self.tokenizer.apply_chat_template(
|
| 30 |
+
# message,
|
| 31 |
+
# add_generation_prompt=True,
|
| 32 |
+
# tokenize=True,
|
| 33 |
+
# return_dict=True,
|
| 34 |
+
# return_tensors="pt",
|
| 35 |
+
# ).to(self.model.device)
|
| 36 |
|
| 37 |
+
# input_length = inputs["input_ids"].shape[1]
|
| 38 |
|
| 39 |
+
# with torch.inference_mode():
|
| 40 |
+
# outputs = self.model.generate(**inputs, max_new_tokens=1024)[0][input_length:]
|
| 41 |
+
# outputs = self.tokenizer.decode(outputs, skip_special_tokens=True)
|
| 42 |
+
|
| 43 |
+
outputs = self.model(message, max_new_tokens=1024)[0]["generated_text"]
|
| 44 |
|
| 45 |
return outputs
|
| 46 |
|